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The number-phase uncertainty products proposed by Carruthers and Nieto are studied to determine 
whether they are minimized by coherent states. It is found that coherent states do not minimize these 
products. States that do minimize some of the uncertainty products are constructed. Variational tech­
niques for the study of arbitrary uncertainty products are developed. 

I. INTRODUCTION 

Recent discussions of a quantum-mechanical phase 
operator for harmonic oscillators have shown that a 
Hermitian phase operator cpop does not exist.! 
Susskind and Glogower1 (SG) have demonstrated 
however that Hermitian sine (S) and cosine (C) 
operators can be defined which have many properties 
that are suggested by the nomenclature. Carruthers 
and Niet02 (CN) have examined the matrix elements 
of Sand C between Glauber's3 coherent states. They 
found that in the high-excitation (classical) limit the 
expectation values of Sand C, in these states, behave 
as the sine and cosine of the phase of the harmonic 
oscillation. 

Carruthers and Nieto have also proposed several 
uncertainty relations to replace the traditional expres­
sion for the number-phase uncertainty product 

(1) 

which is ill-defined. The proposed uncertainty prod­
ucts are given in terms of the Sand C operators 
and have the virtue that, when evaluated with coherent 
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states, they approach their theoretic mInimum for 
highly excited coherent states, and remain small for 
moderate excitation. 

In this paper, we examine further the uncertainty 
products given by CN, in order to determine whether 
the coherent states do in fact give the smallest un­
certainty product. Towards this end, we develop in 
Sec. II new variational techniques for determining 
those normalizable states which give a minimum for 
the uncertainty product of noncommuting Hermitian 
operators. In Sec. III we show that the coherent states 
do not minimize the number-phase uncertainty 
products. We also construct states which do have the 
desired property. In Sec. IV we examine the S-C 
uncertainty product. 

II. MINIMUM UNCERTAINTY PRODUCT 

A. When two Hermitian operators X and Y do not 
commute, they cannot be simultaneously diagonalized 
and their uncertainty product satisfies the inequality 

(2) 

Here (~X)2 == (X2) - (X)2, and iA is the commutator 
of X and Y, assumed to be nonzero. A procedure for 
determining the state for which the uncertainty 
product, appearing in (2), is minimized was given by 
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Heisenberg when X and Yare position and momentum 
operators. His method holds generally when A is a c 
number, and is described in any textbook on quantum 
mechanics. However, if A is not a c number, Heisen­
berg's method cannot, in general, be used to obtain 
the minimizing state. We briefly summarize here 
Heisenberg's method, show that it is inapplicable 
when A is a q number, and then develop a variational 
method appropriate to the case when A is a q number. 
This latter method is also applicable when the un­
certainty product no longer has the simple form (2). 

B. Heisenberg's method consists of establishing that 
for any normalizable state 10/), 

U(o/) == (6X)2(/l y)2 = (X2)( y2) = 1 (X Y)1 2 + R(o/) 

= iP(o/) + iQ(o/) + R(o/), (3a) 
where 

X== X - (X), 

P('Y) == I([X, fDI2 = I([X, YDI2 = (A)2, 

Q(o/) == I({X, f})1 2• (3b) 

The term R('Y) in (3a) is a positive semidefinite 
remainder term, arising from an application of the 
Schwartz inequality to (X2)( f2). R('Y) vanishes if 
and only if XI'Y) is proportional to Ylo/). P(o/) 
and Q('Y) are also positive semidefinite, depending in 
general on 0/. However, if A is a c number, P(o/) 
does not depend on 0/ since (0/ I 0/) = 1. In this case 

U(o/) = iA2 + iQ(o/) + R(o/). (4) 

Clearly the minimum value for U is iA2, which is 
reached if and only if Q and R vanish. Combining 
the requirement that R vanishes with the requirement 
that Q vanishes gives an equation for I'Y): 

or 
X 10/) + iy f 10/) = 0, y real, (5a) 

[X + iy Y] 10/) = A 10/), 

A == (X) + iy(Y). 
(5b) 

For future reference, we give another equation for 
10/) which follows from (5a) upon multiplication by 
X - iy"Y: 

[X2 + y2 y2 - yA] 10/) = O. (6a) 

Equation (6a) shows that y may be evaluated in 
terms of matrix elements of X and Y. By premultiply­
ing (6a) by (0/1, we get 

A (/lX)2)t 
y = 2(/ly)2 = ± (/ly)2 . (6b) 

In obtaining (6b), we have used the fact that A is a c 
number and (/lX)2(/l Y)2 = !A2. (We assume always 

that (/lX2)(/lP) =;f:. 0; viz., I'Y) is not an eigenstate of 
X or y.4) 

Equation (5b) is to be solved as an eigenvalue 
equation for 10/), with three free parameters: y, 
Re A, 1m A, and a subsidiary normalization condition 
(0/ 10/) = 1. The state 10/) then minimizes the 
uncertainty product (3c). We refer to this method as 
the direct method for obtaining the minimizing state. 

C. The direct method is not in general applicable 
when A is a q number. In that eventuality, P(o/) does 
depend on 0/, and we cannot conclude that a minimum 
for U is achieved when Q and R vanish. 

We now solve the minimization problem without 
assuming that the commutator of X and Y is a c 
number. For an uncertainty product of the form 
(/lX)2(/l y)2, the problem is nontrivial only when the 
matrix elements of X between eigenstates of Y 
diverge, and vice versa. For if they are finite, the 
uncertainty product is manifestly minimized to zero 
when it is evaluated with eigenstates of X or Y. The 
subsequent analysis applies only to the nontrivial 
problem. However, later we generalize it to the case 
when the uncertainty products are not of the simple 
form (/lX)2(/l y)2 and it no longer is obvious how to 
find the minimizing state, even though all matrix 
elements are finite. 

Since the expression for U(o/) given in (3c) involves 
the function R('Y) about which we have no useful 
information, we return to the definition of U(o/) in 
terms of matrix elements of X and Y. If U(o/) is to be 
minimized, we may apply the variation principle and 
require that U(o/) be stationary under arbitrary 
variations of 0/. With the help of a Lagrange multi­
plier m, we also impose the subsidiary condition that 
('Y 10/) = 1. Considering the variation of I'Y) to be 
independent of (0/1, we obtain as a necessary condition 
for U(o/) to be a minimum: 

bUlb ('YI = m 10/). (7a) 

Since U == (/lX)2(/lY)2, we need to evaluate b(/lX)2j 
b (0/1. From the definition of (/lX)2, we have 

(/lX)2 = (0/1 X21o/) - (0/1 X 10/)2, 

b(/lX)2/b (0/1 = X2 10/) - 2X I'¥)(X) (7b) 

= [X - (X)]21o/) - (X)21'Y). 

Therefore (7a) becomes 

(/l Y)2 X21o/) + (/lX)2 y21o/) 

= «/lY)2(X)2 + (/lX)2(Y)2 + m)Io/). (7c) 

• If\'Y) is an eigenstate of one of the two operators, say X, then 
(~X)' = 0, and (~Y)' necessarily diverges when A is a c number. 
Therefore the uncertainty product is of the indeterminate form 
O' OCJ. We find in our subsequent analysis that such an indeterminate 
quantity can be sometimes evaluated; see Appendix A. 
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Finally, by taking matrix elements of the above with 
(0/1, we evaluate m, and discover that the coefficient 
on the right-hand side is 2(~X)2(~ y)2, which we 
assume to be nonzero. Thus we obtain an Euler­
Lagrange (EL)-type equation for 10/) which must 
be satisfied if U is to be a minimum: 

g2 y2 
[(6.x)2 + (~y)2 - 2 J \0/) = O. (8) 

We call the states 10/) which solve (8) critical states. 5 

Evidently every critical state 10/) makes U(o/) station­
ary. 

This simple equation provides the appropriate 
generalization of the direct method to the case that 
[X, Y] is a q number. For future reference we call this 
the analytic method. Equation (8) is to be solved as an 
eigenvalue equation with four free, real parameters, 
viz., 

[
(X - OC)2 + (Y - IN _ 2J 10/) = O. (9a) 

a2 b2 

Once \0/) has been obtained from (9a), the four 
parameters are determined self-consistently by setting6 

IX = (X), fJ=(y), 

a2 = (X2) - (X)2, b2 = (P) - (y)2. (9b) 

In general, since Eq. (9a) is an eigenvalue equation 
with self-consistency conditions (9b), we expect to 
obtain solutions only when a special (eigenvalue) 
relation exists between the parameters. Nevertheless, 
we may expect to obtain more than one solution, 
since Eq. (8) serves equally well to determine other 
stationary points of U: further minima, maxima, or 
"points of inflection" of U. One must therefore 
examine (~X)2(~ y)2 = a2b2 for the various critical 
states, to determine which gives the smallest value. 
(If it is not evident that a minimum has indeed been 
attained, one might compute the second variation of 
U to determine the nature of the stationary point.) 

Having established a necessary condition on 10/) 
for U('¥) to be a minimum, we may examine the direct 
method critically to establish its precise relation to the 

5 Eigenstates of X and Y pose a special problem. For suppose 
we take I'P') to be an eigenstate of X, and assume that (~Y)" 
diverges so that the problem is nontrivial. Then Eq. (8) has 
the indeterminate form % I'P') + Y"/oo 1'1') - 21'P') = O. Evi­
dently an effective point of view is to ignore those solutions of (8) 
which are eigenstates of X and Y, and evaluate U separately with 
the eigenstates to determine whether these minimize U. 

6 In the direct method, the parameters ;. and y need not be 
evaluated separately since their value is set by the form of 
Eq. (5a). Indeed the four conditions in (9b) are redundant 
since the form of Eq. (9a) assures that one relation between the 
parameters exists, viz., 

(X') - 2oc(X) + oc' + ( Y') - 2fl( Y) + fl' = 2 
~ ~. 

analytic method. Suppose we set out to determine a 
state 10/) by the direct method (regardless of the nature 
of A). Then (6a) is valid, which may now be written as 

[ 
g2 + y2y2 y2_ ~J 10/) - 0 

(~X)2 (~X)2 (~X)2 -. 
(lOa) 

The parameter y may be again evaluated by taking 
matrix elements and remembering that (within the 
direct method) (~X)2(~ y)2 = t(A)2. Then [compare 
(6b)], 

(A) (~X?)! 
Y = 2(~Y)2 = ± (~Y)2 (lOb) 

and (lOa) becomes 

[ 
g2 y2 2AJ 

(~Xl + (~Y) 2 - (A) IlJ:I') = O. (lOc) 

Comparing this to (8), we see that the direct method 
determines a critical state 10/) which corresponds to a 
stationary value of U(,¥,), if and only if 10/) is an 
eigenstate of A. 

In conclusion we note that even when A is a c 
number and the direct method is applicable, Eq. (5) 
may not have a solution. Then U never achieves its 
minimum of tA2. Nevertheless, it may achieve some 
lowest value which is greater than tA2; and the 
analytic method may be used to determine the states 
for which this occurs. 

D. In order to exhibit the workings of our analytic 
method, we solve the classic problem of minimizing 
the position-momentum uncertainty product 

(~X)2(~p)2. 

In obtaining this old result, we find all the critical 
states for which (~X)2(~p)2 is stationary. 

According to (8) we must solve (Ii = 1) 

[(X ~2 0:)2 + [(l/i)a/:: - fJ]2J o/(X) = 20/(x). (lla) 

The solution to (lla) can be found by comparison to 
the Schrodinger equation for a harmonic oscillator. 
Therefore (lla) possesses normalized solutions only 
when 

labl = i(2n + 1). (lIb) 

The normalized solutions are 

0/ n(x) = eif3xU n(x - 0:), (llc) 

where Un (x) is a normalized harmonic-oscillator 
eigenfunction, with mass tb2

, stiffness constant 2ja2 

and energy 2. The self-consistency requirements (9b) 
set no further conditions beyond (Ub), and all the 
0/ n's are critical states for (~X)2(~p)2. Evidently the 
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minimum uncertainty product is t, which is attained 
with the state 'Yo: 

'I"o(x) = [27T(6.x)2ri exp {-[(x - (X»2/(6.X)2]). (Ud) 

The fact that an oscillator ground-state wavefunction 
minimizes the position-momentum uncertainty prod­
uct is well known, and has been considered to be a 
fortuitous coincidence. It is seen from the present 
analysis that this result is a natural consequence of 
our analytic method. Moreover, we have obtained the 
further knowledge that all the harmonic-oscillator 
wavefunctions are critical states which make 
(6.X)2(6.p)2 stationary. 

E. We continue with our discussion of the minimiza­
tion problem for uncertainty products by discussing 
objects which are of a form more complicated than 
(6.X)2(6. Y)2. (Such uncertainty products have been 
proposed by eN.) 

If the commutator of X and Y is not a c number, 
it may be of consequence to consider an uncertainty 
product of the form 

U ('I") == (6.XW6.Y)2 = U('I") . (12a) 
1 (A)2 (A)2 

By applying the variation principle, we immediately 
obtain the necessary condition on 1'1"), for which 
U 1-('I") is stationary: 

[~ + L - 2AJ 1\1") - 0 (12b) 
(6.X)2 (6. y)2 (A) -. 

This equation is the same as Eq. (lOb) which follows 
from the direct method. Indeed, that the direct 
method is applicable,may be seen by reference to Eq. 
3c). 
According to that expression, 

U (0/) = ! + ! Q('I") + R('I"). (12c) 
1 4 4 P('I") P('I") 

Thus when we arrange for Q and R to vanish, as is 
done in the direct method, Ul attains its minimum. 
[We must of course examine separately the situation 
if the direct method yields a solution for which 
P('I") = 0.] 

When the expression for the uncertainty product is 
even more complicated, for example if it involves 
the matrix elements of more than two operators, the 
direct method, even if applicable, will not in general 
yield solutions. The variation principle may neverthe­
less be used to give a (complicated) necessary condition. 

1II. NUMBER-PHASE UNCERTAINTY 
PRODUCTS 

A. We now turn to the number-phase uncertainty 
products proposed by CN. Following SG,l we 

consider a harmonic oscillator described by creation 
and annihilation operators a and at, respectively, 
which obey [a, at] = 1. The number operator 
Nop == ata has number states In) as eigenvectors; 
and a In) = n! In - 1), at In) = (n + I)! In + 1), 
ata In) = n In). The eigenvectors of a are the coherent 
states IIX): a IIX) = IX IIX). They have the property that 
N == (IXI Nop IIX) = 11X12 = (IXI N,;pllX) - (IXI Nop 11X)2 == 
(6.N)2. In terms of number states, the coherent states 
are given by 

! .00 IX" 
IIX) = e-C 121 L -In). (14) 

n~O (n !)! 

Evidently each coherent state may be described by two 
parameters: amplitude and phase of IX. Thus we 
frequently write INcp) for IIX) where 0( = Ntei'l'. To 
define the sine and cosine operators, we define first 
the number state raising and lowering operators E±: 

E_ == (Nop + l)-~, 
E+ == at(Nop + l)-~ = (E_)t. (i5a) 

These satisfy 

E± In) = In ± I) n ¥- 0, 

E+ 10) = II), E_IO) = 0, 

E_£I_ = I, 
[E_, E+] = P, 

E+E_ = 1- P, 

Pin) = ( 110 10). 

The 5 and C operators then are defined by 

(i5b) 

C = HE_ + E+], S = ii-l[L - E+], (16a) 

1 
[Nop'S] = iC, [NOll' C] = -is, [S, C] = 2i P. 

(16b) 
For coherent states, the matrix elements of C, 5, 
C2, 52 are given by 

Ie == (Ncpl C INcp) = I(N) cos cp, 

Is == (Ncpl 5 INcp) = I(N) sin cp, 

_. N n 

I(N) == N~e-'\ L .\-' 
IIn!(n+l)c (17a) 

J c == (Ncrl C
2 INcp) 

= ! - ie-X + lCcos2 cp - sin 2 cp)J(N), 

J.< == (Nq:'1 S2INcp) 

= ! - ie-X - Hcos2 cp - sin2 q:')J(N), 

.00 Nil 
J(N) == Ne-·\ .2 l. (17b) 

,,~O n! «n + 1)(n + 2W 
The functions I(N) and J(N) have the asymptotic 
(large N) forms 

I 1 
I(N)~1-8N' J(N)~1-2N· (17c) 



                                                                                                                                    

UNCERTAINTY PRODUCTS AND COHERENT STATES 343 

Hence for large N, 

Ie ~ cos cp, Is ~ sin cp, 

Je ~ cos2 cp, Js ~ sin2 cpo (17d) 

It is seen that the expressions involving S may be 
obtained from those involving C by replacing cp by 
t7T - cpo 

The uncertainty relations proposed by eN are 

UI('f') == (!J..N)2(!J..C)2/(S)2 ~ t, 
U2('F) == (!J..N)2(!J..S)2/(C? ~ t, 

U (0/) == (!J..N)2 (!J..S)2 + (!J..C)2 ~ t. 
3 [(S)2 + (c>2] 

(18) 

These relations have the virtues that (i) they represent 
plausible generalizations of the imprecise statement 
(!J..N)2(!J..cp)2 ~ t; (ii) for highly excited coherent 
states they closely approach their theoretical lower 
limit t and remain small for moderate excitations. 
The last uncertainty product is independent of cp 
when evaluated with coherent states. 

B. It is demonstrably true that the coherent states 
do not permit the Vi'S to attain their theoretical lower 
limit t. It may nevertheless be the case that no normal­
izable states exist for which Vi = t; and the coherent 
states give the lowest attainable minimum. We 
establish that (i) the coherent states are not critical 
states, viz., they do not make the uncertainty products 
stationary; therefore a fortiori they do not minimize 
the uncertainty products; and (ii) normalizable states 
exist which allow some of the V;'s to reach their 
theoretical lower limit of t. 

c. We first study VI' The critical states, which make 
VI stationary, satisfy according to (I2b) 

0= [[N op - (N)]2 + [C - (c>]2 _ 2S] \0/). (\9) 
(!J..N)2 (!J..C)2 (S) 

Expanding \'f') in number states \0/) = ~n an In), we 
find that the coefficients an must satisfy the recursion 
relation 

('b 2 

) (b 2 

) ta2 + ;- - {J a l + a20(2 + t + {J2 ao = 0, 

('b2

) (b2 

) tan+2 + ;- - {JI an+! + a 2 (n - 0()2 + 1 + {J2 an 

- _I _ + {J an_I + !an_2 = 0 n ~ 1, a_I = 0, 
(

'b
2 

) 

y (20a) 
subject to the subsidiary conditions 

1 = (0/ 10/), 0( == (0/\ Nop \0/), 

{J == (0/\ C\o/), y == (0/\ S\o/), 

a2 == (!J..N)2 = (0/1 N~p 10/) - 0(2, 

b2 == (!J..C)2 = (0/\ C2\0/) - {J2. 

(20b) 

Whether the coherent states satisfy these equations 
can be easily checked by setting 10/) = INcp); viz., 

an = e-tv[Ninein"'/(n !)!], 0( = a2 = N. 

For simplicity we also assume cp = t7T; viz., {J = O. 
Then (20a) becomes 

N_ + 4b
2 

N! _ (4b 2N + 1) = 0, (21a) 
.)2 y 

N2 b2N! 
---~~----;-+4 ! 
«n + 2)(n + l)n(n - I»! y«n + l)n( n- 1» 

(
4b

2 
[n _ N]2 + 2) N 

N (n(n + I»! 

+ 4b
2 

N! + 1 = O. (21 b) 
y (n)! 

Equations (21) are manifestly not satisfied; hence the 
coherent states are not critical states, and do not 
minimize the uncertainty product. 

We may however demonstrate that for large N the 
coherent states do satisfy (21b) approximately. For 
large N, (!J..N)2(!J..C)2,...." !(S)2,...." t sin2 cp = t; thus 
4b2 = 4(!J..C)2,...." (S)2/(!J..N)2,...." liN; and y""'" sin cp = 
1 [see (17)]. Also for large N the most important 
number states In), contributing to the coherent state 
\Ncp), are those with n,...." N; since for these values ofn, 
N!(n !)-! assumes its maximum. Therefore for large 
Nand n,...." N the left-hand side of (2lb) becomes 
O( 1 IN), and (21 b) is approximately satisfied. This 
argument cannot be given when (C) == {J :;6 O. 

It is evident that the analysis of V 2 proceeds in the 
same fashion towards the same conclusion, except 
that the condition (C) = 0 is now replaced by (S) = O. 

D. States that do minimize the uncertainty product 
VI and allow it to achieve its theoretical lower limit of t 
may be easily constructed (under certain restrictions). 
The discussion in Sec. lIE shows that we may use the 
direct method to determine these states. Accordingly 
we wish to solve 

(Nop + iyC) \0/) = A \0/), 

(0/ I 0/) = 1. (22) 

For simplicity, we again confine ourselves to the case 
('Y\ C \,¥) = O. This makes A real and equal to 
('¥\ Nop \'¥). Expanding in number states leads to the 
recursion relation 

(A - n)an = liy(an+! + an-I), 

a_I = O. 
(23a) 

To put this in a more transparent form, we define 
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an = (-i)nbn; then the bn's satisfy 

(2Jy)(n - A)bn = (bn_1 - bn+1), 

b_1 = O. 

where Yl and Y2 are real and nonzero. Evidently the 
commutator of the operators appearing on the left­
hand side of (26c) must annihilate the state I'P'). 

(23b) This sets the condition 

This recursion relation is well known.7 We do not 
examine it in detail as it is sufficient for our purposes 
to extract one solution. A solution to (23b) is 

(24a) 

where I (Z) is a modified Bessel function of the first 
• Jl • 

kInd of order ft.s We also reqUire L1-;.(Y) = O. 
(This forces A to satisfy 2k + 1 > A > 2k, where 
k = 0, 1, .... ) The multiplicative constant v is 
obtained from the normalization condition 

00 

Ivl 2 ~)~_;.(y) = 1. (24b) 
n=O 

In Appendix B we prove that the series in (24b) 
converges, that ('P'I C I'P') = 0, and ('P'I S 1'P') ,.c O. 
Thus the desired solution of (22) for which U1 = 1, is 

00 

I'P') = v! (- itI n-iy) In), 
n=O 

A = (Nop), 

(~N)2(~C)2/<S)2 = t. 
(25) 

Unfortunately these states do not seem to have any 
physical significance. 

The recursion relation (23b) is also solved by the 
number states. These however do not minimize U1 , 

as we demonstrate explicitly in Appendix A. 
It is clear that states which allow U2 to reach t 

can also be constructed. 
E. We now examine the symmetric uncertainty 

product Ua . We first show that no states exist for 
which Ua attains its minimum value of t. According 
to (3a) we have 

(~N)2(~C)2 = t(S)2 + tQl('P') + R1('P'), 
(26a) 

(~N)2(~S)2 = t(C)2 + tQ2('P') + R2('P'). 

Therefore for Ua to be t we must have 

o = U 3 - 1 = [(S)2 + (C)2]-1 [!Ql ('P') 

+ iQ2('P') + R1('P') + R2('P'»). (26b) 

Since each term on the right-hand side is positive 
semidefinite, Q1,2 and R1,2 must vanish separately, 
which according to (5b) requires 

[Nop + iYIC) I'P') = Al I'P'), 

[Nop + iY2S) I'P') = A2 I'P'), 
(26c) 

7 G. N. Watson, A Treatise 011 the Theory of Bessel FUllctions 
(Cambridge University Press, London, 1952), p. 294. 

8 Reference 7, p. 172. 

- s + - C + !.. P I'P') = O. [
1 1 "] 

Yz Yl 2 
(26d) 

Equation (26c) may be used again to evaluate S I'P') 
and C I'P'). Therefore (26d) becomes 

[Y12(N op - AI) + y;:2(N op - A2) + tP) I'P') = O. 

(26e) 

Expanding I'P') in number states yields the conditions 

[ 
- Al _ A2 + !] ao = 0, 

Y; y~ 2 (26f) 

[Y12(n - AI) + y;:2(n - A2)]an = O. 

These recursion relations are solved only by the 
number state IA), where Al = A2 = A = integer; 
(C) = (S) = O. We demonstrate in Appendix A that 
the number states do not minimize Ua• 

Thus the direct method does not yield any solutions, 
and we are Jed to consider Ua by the analytic method. 
The procedure to follow is the same as for U1 • The 
variation principle gives an EL equation which 
represents a necessary condition which must be 
satisfied if Ua is to be minimized. With this condition, 
it can easily be verified that the coherent states are not 
critical states and do not minimize Ua . Again it is 
found that, for large N, the coherent states approxi­
mately satisfy the necessary condition, but now no 
restriction is set on rp. The EL equation is too compli­
cated to serve to determine the states that do minimize 
Ua; hence we do not present the details of this 
calculation. (The recursion relation which follows 
from the EL equation actually is elementary, but the 
imposition of the subsidiary conditions is complicated. 
In any case the solution, if it exists, surely has no 
physical significance.) 

Since the first variation of Ua does not vanish for 
coherent states, there exist states, arbitrarily close to 
the coherent states, for which Ua is smaller than it is 
when evaluated with coherent states. For example, 
with the state \'P'I) = w[INrp) + Ee-tN 10)], where w 
is a normalization factor, E a positive small parameter, 
and N large, Ua('P'I) is smaller by an amount2EN~e-'v 
than with the coherent state of the same excitation. 

IV. SINE-COSINE UNCERTAINTY 
PRODUCT 

Since Sand C do not commute, limitations exist 
on the simultaneous measurement of these two quan­
tities. However in the classical limit these limitations 
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must disappear. Thus we are led to consider the 
uncertainty product 

(27) 

In their original discussion of the Sand C operators, 
SG demonstrated explicitly. that there exist unnor­
malizable states 

00 

Ie) = ~;ein8In) (28) 
t/=O 

for which (LlS)2 = ° = (LlC)2, hence U4 = 0. Car­
ruthers and Nieto have shown that for the normaliz­
able coherent states U4 goes rapidly to zero for large 
N, and to -h for small N. 

We now wish to use our analytic method to investi­
gate whether there exist normalizable states which 
minimize U4 , and whether the coherent states are 
critical states for U4 • We find that no normalizable 
critical states exist. 

To establish this result, we use (8d) 

[(;;)2 + (Ll~)2 - ·2] I'¥) = 0. (29a) 

For simplicity we confine ourselves to the sym-
metric case 

Thus we need to solve 

[(S - rx)2ja2 + (C - rx)2/a2 - 2] I'¥) = 0, (29b) 

with the subsidiary conditions 

(\f'I'¥) = I, rx = (S) = (C), 

a2 = (S2) - rx2 = (C2) _ rx2 • 

Equation (29b) may be simplified into 

(29c) 

[v - tP - ueiirr E+ - ue-!irr E_] I'¥) = 0, (29d) 

where 

u = J2rx, 
v = I + u2 

- 2a2• 
(2ge) 

Expanding in number states gives the recursions 

(v - t)ao - ue-1irra1 = 0, (30a) 

van - u(elirran_l + e-!irran+1) = 0, n ~ 1. (30b) 

This is obviously not satisfied by the coherent states, 
except approximately for large Nand n '"""-' N. The 
general solution of (30b) is given by 

an = ei (rr/4)n[A pn + Bp-n], (31a) 

v 1 - = p + _. (31b) 
u p 

We assume v ¥= 0. If I'¥) is to be normalizable, we 

must have In lan l2 = 1; therefore A is zero if Ipl > 1, 
and B is zero if Ipl < 1. Taking the latter case and 
imposing (30a) and (3Ib) determines p = 2u and sets 
v = t + 2u2• The normalization can now be deter­
mined, and we obtain as a solution 

1 00 

I'¥) = (1 - 4n2)2 I ei(rr/4)n(2nt In), 4u 2 < 1. (32a) 
n=O 

Imposing now the subsidiary condition 

u//i = IX = ('¥I CI'¥) = /2u (32b) 

gives u = ° and no nontrivial normalizable solution is 
obtained. 

Similarly when 4u2 > 1, no normalizable solution 
is obtained. Therefore we conclude that U4 cannot be 
minimized by normalizable states; and only the 
unnormalizable states (28) minimize U4 • For these 
states (Nop ) diverges and they obviously represent the 
high excitation limit. [Such states cannot be deter­
mined by the EL equation (29d) since that equation 
was derived under the assumption that the solutions 
are normalizable.] 

V. SUMMARY 

In conclusion, we summarize our results. We have 
developed new variational techniques for the deter­
mination of states that minimize the uncertainty 
product of operators. By the use of these techniques 
we have demonstrated that the coherent states do not 
minimize the various uncertainty relations which can 
be given for number and phase operators. Although 
normalizable states do exist that minimize some of 
the number-phase uncertainty products, we do not 
believe that these states have any physical significance 
as they are strongly dependent on the specific form 
of the uncertainty product. Moreover, the coherent 
states do not even make any of the uncertainty 
products stationary. Thus the coherent states have no 
unique relevance to the classical limit of the phase 
operators. Indeed any state, which, when expanded 
in number states In), has expansion coefficients an, 
which for large (Nop ) are strongly peaked and con­
stant at n'"""-' (Nop), serves to minimize approxi­
mately the uncertainty products. An example of such 
a state was given at the end of Sec. HIE. 

APPENDIX A 

Throughout our analysis we have ignored the fact 
that the number states are solutions to some of the 
various equations we studied. We examine here 
whether these eigenstates of N op minimize the various 
uncertainty products U1 , U2 , U3 [Eq. (18)]. 

For number states, of course, (LlN)2 = 0, (S)2 = 
0= (C)2, while (LlS)2 ¥= ° ¥= (6.C)2. Therefore the 
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uncertainty products have the indeterminate form 0/0. 
To obtain the value for this we proceed as follows. 
Consider the excited coherent state 

(AI) 

These states are normalized and the number states 
In) are reached as N --+ ° in these states. We therefore 
evaluate all matrix elements with the states INqm) 
and then let N --+ 0. 

The relevant matrix elements are easily evaluated. 
One finds 

(Nqml Nop I Ncpn) = N + n, 

(Ncpnl N~p INcpn) = (N + n)2 + N, (A2) 

(Ncpnl T INcpn) = (Ncpl T INcp),' 

where T is any of the operators S, S2, C, C2. From 
these it follows that 

(A3) 
and 

Ui(n) = lim Ui(Ncp). (A4) 
N-+O 

According to the definitions of the U;'s [Eq. (18)] 
and using the formulas (17) for the matrix elements 
of the Sand C operators between coherent states, 
we have 

UiNcp) 

= N[J2(N) sin2 cpp 

x [i - ie-N + !(cos2 cp - sin2 cp) 

x J(N) - 12(N) cos2 cpl, 
U2(Ncp) = Ul (tN1T - cp), 

U3(Ncp) = Ul (iN1T). 

For small N, 12 ,...." Nand J,...." N/V2. Therefore 

Ul(n) = 1/4 sin2 cp, 

U2(n) = 1/4 cos2 cp, 

U3(n) = i. 

(A5) 

(A6) 

It is seen that Ul(Nqm) and U2(Ncpn) do not approach 

a unique limit, viz., a limit independent of cp; therefore 
Ul(n) and U2(n) do not exist. For U3 we conclude that 
either U3(n) = i, or if there exist other ways of 
approaching the number states, leading to a different 
value of U3(n), the limit does not exist. In any case, 
the number states do not minimize the uncertainty 
products. 

APPENDIX B 

We wish to prove that the state I'Y), 

ao 

I'Y) = y I (-WI n-;'(Y) In), (B1) 
n=O 

is normalizable, viz., 

ao 

I I~_).(y) < 00. (B2) 
'11=0 

For large enough n, n - A is positive and the following 
integral representation for III is valid8 : 

I Il(Z) = (iZ)1l Il (1 - t2)1l-te±21 dt; 
1Ttr(,U + t) -1 

Re,u> -to (B3) 
Evidently 

where M is positive and independent of nand A. 
Therefore the series (B2) converges. 

We also need to show that ('YI C I'Y) = 0. This is 
readily established from the formulas (16a) and (B1). 

Finally we establish that ('YI S I'Y) =;e 0. Recall that 
S is proportional to the commutator of N op and C. 
According to the general discussion of Sec. IIC, we 
know that the expectation value of the commutator 
is proportional to y(~C)2. Since y is nonzero, we may 
prove that (S) is nonzero by showing that (~C)2 does 
not vanish. However (~C)2 = (C2) since (C) = 0. 
But (C2) is nonzero since the operator C manifestly 
does annihilate I'Y). 
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The divergence of the constant-pressure specific heat C p and the isothermal compressibility KT as 
one lowers the temperature of the ideal boson gas to the transition temperature To is discussed in terms 
of the onset of off-diagonal long-range order (ODLRO) of the one-particle density matrix Pl' 

The phase transition which occurs in the ideal boson 
gas is well known to every student of statistical 
mechanics. l If N identical bosons, each of mass m, 
are in a container of volume V, then below the 
critical temperature Tc = 3.3131i2pf /(k Bm), where kn 
is Boltzmann's constant, a finite fraction No/N of the 
particles have zero momentum in the thermodynamic 
limit (N, V -+ 00 with P = N/V held fixed). This so­
called Einstein condensation reflects itself in the 
behavior of the thermodynamic functions, for ex­
ample, that the specific heat at constant volume Cv 
is a continuous function of T but has a discontinuous 
derivative at Tc. Although the mathematical deriva­
tion of these and other well-known properties of the 
system is straightforward, it is our contention that 
the physical basis for some of these properties is as 
yet not fully understood. As an example we cite the 
easily derived results that the specific heat at constant 
pressure C p and the isothermal compressibility KT 
diverge as (T - Tc)-I when T is lowered to Tc for 
fixed p.2 A satisfactory physical explanation must 
clarify the origin of this behavior of C p and KT which 
occurs even though No/N is strictly zero in the tem­
perature range in question. 

Several years ago y ang3 suggested that in a quantum 
many-body system it is possible to have off-diagonal 
long-range order (ODLRO) of certain reduced­
density matrices in the coordinate representation, and 
that this order characterizes a new thermodynamic 
phase of quantum-mechanical origin. A second and 
vital plank of the program is the requirement that 
the thermodynamic functions must explicitly reflect 

* Work performed while the author was a Fellow of the John 
Simon Guggenheim Memorial Foundation and on leave of absence 
from the University of Pennsylvania, Philadelphia, Pa. 

I For example, see K. Huang, Statistical Mechanics (John Wiley 
& Sons, Inc., New York, 1963), Chap. 12. 

2 F. London, Super fluids (John Wiley & Sons, Inc., New York, 
1954), Vol. II, p. 53, obtains Cp by taking the appropriate derivative 
of the enthalpy and shows that the former diverges as T ->- To + O. 
The explicit form of the divergence is not given by London but it is 
trivial to calculate using several of his formulas. 

3 C. N.Yang, Rev. Mod. Phys. 34, 694 (1962). 

the existence of ODLRO. In this paper we generalize 
Yang's program to write several thermodynamic 
functions describing the ideal boson gas for tempera­
tures just above Tc (where there is no ODLRO) in a 
form so that they explicitly reflect the onset of ODLRO 
as T -+ Tc + O. In particular, we recall a simple 
relationship for this system between the pair correla­
tion function and the one-particle density matrix PI, 
and we use it together with a fluctuation-dissipation 
theorem to relate the divergence of KT and C p as 
T -+ Tc + 0 to the onset of ODLRO in PI' 

For a system -of bosons of number density P in 
thermodynamic equilibrium and described by the 
grand canonical ensemble, the one-particle density 
matrix in the coordinate representation and the pair 
distribution function are defined as 

Pl(r, r') = (tpt(r)tp(r'», (1) 

g(r, r') = p-2 (tpt(r)tpt(r l )tp(r')tp(r», (2) 

respectively. In these equations tp(r) denotes a field 
operator satisfying the Bose-Einstein commutation 
relations 

[tp(r), tpt(r')] = £53(r - r'), (3a) 

[tp(r), tp(r')] = 0; (3b) 

the average of any operator 0 is given as 

(0) = (Za)-l Tr [e-P<H-IlNJO], f3 = (kBT)-I, (4) 

where the quantities Za, ft, H, and N denote the 
grand partition function, 

(5) 

the chemical potential, Hamiltonian, and total particle 
number operator of the system, respectively. For a 
translationally invariant system, PI and g are functions 
of r - r', and if one employs orthonormalized single­
particle plane-wave states CPk = V-! exp (ik • r) satis­
fying periodic boundary conditions with respect to 
the normalization volume V, then (1) and (2) can be 
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written as 
PIer - r') = V-I L (Nk)eik . (r_r

f

), (6) 
k 

g(r - r') = (N)-2 L (aJaJaq_kaP+k)eik . (r_r
f

). (7) 
pqk 

In these equations at and ak are the usual boson 
creation and destruction operators for the state Tk' 
and Nk = atak • Integration of (7) over the volume V 
gives the relation 

1 + pJd3r[g(r) - 1] = _1 «N2) - (N)2). (S) 
(N) 

Now the right-hand side is related to the isothermal 
compressibility KT by the well-known relation4 

(N2) - (N)2 = (N)kBTpKT' (9) 

so that we obtain the formula 

knT pKT = 1 + P f d3r[g(r) - 1]. (10) 

In the case of the ideal boson gas, nonzero contri­
butions to the sums in (7) arise only when k = 0 and 
k = q - p. It is then straightforward to show that 

g(r) = 1 + (pir)/p)2 

+ (N)-~ L «N~) - 2(Nk)2 - (Nk» 
k 

= 1 + (PI(r)/ p)2. (11) 
The second equality is a consequence of the relations 

(N:) - 2(Nk)2 - (Nk ) = 0, (12) 

(Nk ) = (eP'k - 1)-\ €k = (2m)-IJj2k2 - fl, (13) 

which holds for this system. In the thermodynamic 
limit and for temperatures T > Tc , the function 
PIer) is given as5 

r)=_1 (~)lOOd sin (27T!ir/A) 
PI( ,3 Y y-PI' 1 ' 

7TA roe -
(14) 

where A = (27TJj2f3/m)! is the thermal de Broglie wave­
length. In the regime r «A, PIer) as defined by (6) 
reduces to P and indeed (14) correctly reduces to the 
standard relation 

2 1 loo i P - - - dy --"---
- 7T! 1.3 0 eY-PI' - 1 ' 

(15) 

which applies for T > Tc. In the opposite limit, 
r» A, the dominant contribution to the integrand in 
(14) arises from small y and S06 

PI(r)"""'-3- dy sin (27T!y!r/A) 1 1.100 

1 
7TA roy - f3fl 

= A-3(A/r) exp [-27T!( -f3fl)!r/A]' (16) 

• See p. 167 of Ref. I. 
5 For T < T, the k = 0 term of the sum in (5) is nonvanishing in 

the thermodynamic limit and thus PI is given as the sum of (No>! V 
plus the integral of (14). Also see (20) below. 

6 The next term in the asymptotic expansion of Pier) is 
2A-30.!r)e-27rr jA cos (2rrr!A) and thus may be ignored for the purpose 
of obtaining the leading term of the asymptotic expansion of 
g(r) - 1 = p,Cr)'. 

Now, as shown in the Appendix, in the temperature 
range 0 < T - Tc« Tc 

(-f3fl)! = 1.105(T - Tc)/Tc, (17) 

and so we see that the range of PIer) increases as 
(T - Tc)-I as T --+ Tc + O. These formulas quantita­
tively describe the onset of ODLRO in the density 
matrix Pl' Using (11), (16), and (17), we have' 

g(r) "'-' I + 0.146(Afr)2 exp [-7.S4(r/A)(T - Tc)/Tc] 

(IS) 

for large r. This relation combined with (10) shows 
explicitly that KT diverges as (T - Tc)-I for T--+ 
Tc + O. Finally, by recalling the thermodynamic 
relation 

Cp = Cv + vT(oP/oT)~KT' (v = l/p), (19) 

we see that C p also diverges as (T - Tc)-I since Cv 
and (oP/oT)v remain finite. 

Below Tc the term k = 0 on the right-hand side of 
(5) does not vanish in the thermodynamic limit and 
we have 

PIer) "'-' «No)fV) + A-3(Afr) (20) 

for large r. That is, lim PIer) = (No)/V =;1= 0 and thus 

PI displays ODLRO. 
The above treatment provides a new way of viewing 

the origin of the phase transition in the ideal boson 
gas. We have seen that the onset of the phase transition 
as T is lowered to Tc ' and in particular the singular 
behavior of KT and C p, can be described in terms of 
the onset of ODLRO in Pl' In turn, ODLRO and 
its onset in PI is a particularly useful concept, for it 
enables one to give quantitative expression to the 
intuitive idea that there exists "order" in the system 
in the quantum regime, that is, for T below and just 
above Tc. The order, of course, is the manifestation 
of the requirement of using symmetric wavefunctions 
to describe a boson system, and it persists until 
masked by the increasing disorder of the heat reservoir 
as T is raised to the vicinity of Tc . 

A useful intuitive concept in discussing the behavior 
of a ferromagnetic spin system above the Curie point 
Tc is that of the onset of long-range spin order as 
T --+ Tc + O. In the case of the two-dimensional 
Ising lattice, the onset of long-range spin order is 
accompanied by a logarithmic divergence of the 
specific heat. The onset of ODLRO in PI, although 

7 It is worth recalling t\1at the Ornstein-Zernicke result for the 
large r behavior of the pair distribution function of a classical fluid 
near the critical point is g(r) - I ~ (A!r)e-rIR(T), where the range 
parameter R(T) oc (T - T,)-}' On the other hand. the Landau 
theory applied to such a fluid predicts KT ~ B(T - T,)-l for 
T -'> T, + 0 along the critical isochore. See M. Fisher. J. Math. 
Phys. 5, 944 (1964), Eqs. (1.4), (3.15), and (3.19); L. P. Kadanoff 
et al., Rev. Mod. Phys. 39, 395 (1967), Sec. II. 
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more abstract, is the analogous concept for the ideal 
boson gas. 

Hebrew University of Jerusalem, and he wishes to 
acknowledge their kind hospitality. 

APPENDIX 
The lambda transition in liquid 4He also features a 

divergence of C p and KT as one lowers T to the 
lambda T;., although in that case the divergences are 
logarithmic instead of the form (T - T;.)-I. Presum­
ably these divergences also reflect the onset ofODLRO 
in PI but with a less rapid increase as T ---+ T;. + 0 
than for the ideal boson gas.s 

We derive here (17) of the text, giving ft as a func­
tion of T just above Tc. Evaluating (15) for T = Tc' 
where ft = 0, one obtains 

3 

= y(~)(mkBTc)~ 
P ., 2 27T1i2 ' 

(Al) 
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where {Cn = 2.612. Just above Tc the value of ft is 
very small and thus we can approximate the right­
hand side of (IS) as 

8 An alternate suggestion for explaining the divergence of Cp and 
Kp for T -+ T;. + 0 in the case of liquid helium has been advanced 
by W. H. Keesom and A. P. Keesom, Physica 2, 557 (1935). 
According to this suggestion, in the vicinity of T;. the liquid is to be 
thought of as divided into small, weakly interacting domains which, 
because of thermal fluctuations, can have different temperatures. 
The domains with temperatures less than T;. give the anomalously 
large contributions to the specific heat. The net effect is to cause the 
specific heat in the vicinity of T). to be a symmetric function of 
T-T).. 

JOURNAL OF MATHEMATICAL PHYSICS 

p~2l roodx~ _2,Plftl roo

dx 1 1 
7T! A3 Jo eX - 1 7T~ A3 Jo x~(x + P 1ft\) 

1 
27T;r ! 

~ p[l + i(T - Tc)/Tc1 - {(l) pCP Iftl)\ 

and thus 
(~ Iftl)~ = 1.l05(T - Tc)jTc. (A2) 
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A model is constructed for the purpose of investigating electron correlations pertinent to magnetic 
ordering and Mott insulation in solids. The model consists of an assembly of interacting itinerant 
electrons in a periodic atomic lattice, such that the intra-atomic coupling between electrons is extremely 
strong. The correlations due to this latter coupling serve to prevent electrons of opposite spin from 
occupying the same atomic state, except in virtual transitions. Thus their net effect is to renormalize 
certain interactions and, also, to confine the state vectors of the entire system to a subspace, $.), of the 
Hilbert space, $.)0' that is kinematically available to them. The observables are thus represented by 
operators on ~, whose algebraic properties are different from those of the corresponding operators 
on ~o . Thus, the correlations due to intra-atomic forces are imbedded in the theory in the form of the new 
algebra. In cases of one electron per atom, these correlations lead simply to both magnetic ordering and 
Mott insulation. In cases of nonintegral number of electrons per atom, they can lead to magnetic ordering, 
subject to specified conditions. 

I. INTRODUCTION 

In recent years a number of authorsI - 3 have 
formulated theories of magnetic ordering in solids 
on the basis of itinerant electron models. Each of these 

• Permanent address: Queen Mary College, London, England. 
1 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963). 
2 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963); T. 

Izouyama and R. Kubo, J. App!. Phys. 35, 1074 (1964); M. C. 
Gutzwiller, Phys. Rev. 137, 1726 (1956). 

3 D. C. Mattis, Phys. Rev. 132,2521 (1963). 

models represents an assembly of electrons in a 
periodic lattice, the electrons being confined to states 
formed from atomic orbitals for incomplete shells. 
They differ from the earlier model of Stoner4 in that 
they take account of the intra-atomic forces between 
electrons. These forces can be very strong5 in cases of 
some transition or rare-earth metals and their 

4 E. C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938). 
5 N. F. Mott, Advan. Phys. 13, 325 (1964). 
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compounds. If sufficiently strong, they lead naturally 
to nonzero atomic magnetic moments (Hund's rule). 
Once these moments are established, they can be 
aligned by cooperative effects with the result that the 
electronic system becomes magnetically ordered. 
Thus, the magnetic ordering arises as a result of both 
intra- and inter-electronic correlations. 

A second kind of electronic ordering which can occur 
in cases of assemblies based on incomplete atomic 
shells is that corresponding to Mott6 insulation. 
This can occur only if the number of electrons per 
atom in the assembly is integral. This type of ordering 
also results from correlation effects that are not 
taken into account in the conventional band model. 
It is worth noting that the phenomenon of Mott 
insulation is often accompanied by magnetic ordering, 
e.g., in compounds of transition and rare-earth metals. 
Thus, it is of interest to understand whether, and 
how, these phenomena can arise from the same 
correlative effects. 

The object of the present paper is to introduce a 
sharpened treatment of the electronic correlation 
problem, with reference to magnetic ordering and 
Mott insulation. This will be based on a model of 
interacting electrons in a periodic atomic lattice, for 
which the intra-atomic forces are extremely strong. 
We shall employ a simplification introduced by 
previous authors1.2 in that the electronic states will be 
considered to be formed from combinations of a set 
of equivalent nondegenerate atomic wavefunctions­
even though the corresponding atomic functions in 
real magnetic systems are degenerate (3d or 5f). 
Thus, in our model, c, the number of electrons per 
atom, is <2. Further, we may restrict our analysis to 
cases where c < 1, without loss of generality, since 
the cases c > 1 could equivalently be treated in terms 
of holes in the band, whose number per atom would 
then be (2 - c) < 1. 

The essential new feature of our treatment is that it 
takes account, ab initio, of the fact that intra-atomic 
forces, if sufficiently strong, will prevent two electrons 
of opposite spin from occupying the same atomic state, 
except in virtual transitions which merely lead to 
certain renormalizations. Thus the intra-atomic 
forces serve to reduce the "phase space" available to 
the electronic system. In order to formulate this effect 
we first represent the states that are kinematically 
available to the system as vectors in a Hilbert space 
~o' Correspondingly, the observables are represented 
by a set of operators {Qo} on bo. We then take account 
of the fact that the intra-atomic forces exclude the 

• N. F. Mott. Phil. Mag. 6, 287 (1961). 

state vectors from a well-defined set in bo, which 
means that they confine the states to a subspace, b, 
of bo. Consequently, the observables are now 
represented by operators {Q} on ~. These are related 
to the corresponding primitive operators {Qo} by the 
formula 

Q = PQoP, 

where P is the projection operator for ~. It is evident 
that the algebra of the set {Q} is quite different from 
that of {Qo}. This difference represents the changes 
in the properties of the system due to correlations 
engendered by intra-atomic forces. In other words, 
the effects of these forces are built into our formalism 
through the new algebra of the operators on the 
reduced Hilbert space b. Once the new algebra is 
formulated, it becomes a relatively simple matter to 
investigate the properties of the model. In particular, 
it leads to a simple theory of both Mott insulation and 
magnetic ordering for the case of a single electron 
per atom, and it also leads to a criterion for ferro­
magnetism in the case of nonintegral number of 
electrons per atom. 

We shall set out the theory as follows. In Sec. II we 
shall construct our formalism for the model. Thus we 
start with a Hamiltonian, Ho (on ~o)' for an assembly 
of electrons in a band which interact via both intra­
and inter-atomic forces with one another, and which 
are also subject to static forces that govern tunneling 
motion. We then take account of the strong intra­
atomic forces by confining the state vectors to ~ and 
reformulating the model in terms of a simpler 
Hamiltonian operator H (on b). We also formulate the 
algebraic properties of new creation and annihilation 
from which all operators on ~ are generated. The 
theory that follows will be based on these operators 
on~. 

In Sec. HI we shall investigate the properties of the 
model for the case where c, the number of electrons 
per atom, is equal to unity. It will be shown, by an 
exact treatment of the model, that in this case the 
system is both a Mott insulator and a ferromagnet, or 
antiferromagnet, depending on the exchange forces. 

In Sec. IV we shall obtain a criterion for ferro­
magnetism for the case where c < 1. This will be 
based on a treatment of appropriate quantum­
mechanical Green functions in which a decoupling 
approximation is introduced. The criterion we obtain 
will be seen to be similar to that of Hubbard. l In 
Sec. V we shall summarize our conclusions. 

II. THE MODEL 

As stated above, the model will represent an 
assembly of interacting electrons. These particles are 
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represented by a quantized wave operator 

"Pix) = ~>,;.rp,(x), 
r 

where the rp;s are an orthonormal set of atomic 
wavefunctions (Wannier functions) localized at lattice 
sites r, A (= ± 1) labels the electronic spin, and 
rx:;., ar ;. are creation and annihilation operators on 
~o, satisfying the Fermion anticommutation rules 

{a;;., rx;,d+ = 0 } 
{a;;., rx,,;.,}+ = (jr,,(jAA" 

(1) 

The vacuum state vector 10) is defined by 

ar;.lo) = 0 for all r, A. 

The set of vectors formed by application of the 
operators {a:iJ and all their products to the vacuum­
state vector, span the Hilbert space ~o. The observ­
abies and state vectors of the system are represented 
by operators and vectors, respectively, in ~o' In 
particular, the operator representing the number of 
electrons of spin A at the site r is 

(2) 

while the operators representing the total electronic 
number and twice the electronic spin (in units where 
Ii = 1) at that site are 

1', =:2 1',;. I 
(J = (:b;) a(Y) a(z) \ 

, = t(a:;.:,,~;.:iArx:;.rx,,-;., AC!:;;.rxd),j 

and 
(3) 

respectively. The Hamiltonian for the system will be 
assumed to be (cf. Refs. 1, 2) 

where the primes over the first three L's indicate 
exclusion of terms with l1 = O. In this Hamiltonian 
10(>0) represents the interaction energy between tw~ 
electrons on the same atom; f.", k!J. represent the 
strengths of exchange and spin-independent couplings 
between electrons on different sites, and I!J. is the 
parameter governing the transfer of an electron from 
r to r + l1 by tunnel effect. It should be noted that the 
above form of Ho depends on the neglect of inter­
actions involving overlap of more than two atomic 
wavefunctions, (e.g., terms such as 

const X rx* a* a rx 
rVl.l r2A.2 Tsla r.f,A4 

with r1' r2, r3, r4 all unequal). This neglect is justified 
in cases where the atomic wavefunctions rpr are 
highly localized, as in very narrow bands. It should 
also be noted that the parameters 10 , j, k, tare 
phenomenological quantities. In relating their values 
to properties of real solids, one should realize that 
these parameters contain contributions due to indirect 
interactions involving other bands; for example, the 
interaction between "magnetic" electrons in a metal 
is screened by conduction electrons in a higher 
conduction band. Further, the tunneling parameter 
I!J. may be strongly dependent on the coupling between 
electrons and lattice vibrations7 as this can reduce 
t!J. to much less than its value for a rigid lattice. 

Our treatment of the model will be based on the 
assumption that is valid for very narrow bands5-

namely, that the intra-atomic interaction parameter, 
10 , is much greater in absolute magnitude than the 
interatomic couplings I!J. ,j!J., k!J.. Now, by formula (4), 
10 represents the energy required to bring two electrons 
into the same atomic (spatial) state. Consequently, 
for sufficiently large 10 (» I t!J.1 , U!J.I, Ik!J.1) such doubly 
occupied atomic states cannot occur in the low-lying 
states of the entire system, except in virtual transitions. 
It is well known that, in general, such transitions lead 
to renormal{zations of the interactions in a system. 
In the present context, this means that they lead to 
renormalizations8 of the parameters I!J.' j!J.' k!J.. It is 
readily seen, for example, that the renormalization 
of j!J., by processes involving virtual transitions to 
doubly occupied atomic states, is exactly equivalent 
to the introduction of Anderson's9 superexchange 
coupling. 

Thus, as transitions to doubly occupied atomic 
states occur only in virtual processes, we may take 
account of them by renormalizing the parameters 
t!J., j!J.' k!J.' and thereafter excluding such processes 
from the theory. This exclusion is evidently equivalent 
to confining the state vectors of the system to ~, 
the subspace of ~o spanned by those vectors I ) 
for which 

1',l1'r,-l I ) = 0, for all r. 

Thus, the projection operator for ~ is 

p = IT (I - 1',,11',,-1)' (5) , 
Our program, then, is to reformulate the model so 

as to represent the observables and states of the system 

7 G. L. Sewell, Phil. Mag. 3, 1361 (1958). 
8 One may derive formulas for T, J, K in terms of t j k by taking 

accoun~ of virtual transitions from s.; to .f>o - s.; by' standard-field 
theoretical methods. [cf. W. Heitier, Quantum Theory of Radiation 
(Clarendon Press, Oxford, England, 1954)). 

• P. W. Anderson, Solid State Phys. 14, 99 (1963). 
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by operators and vectors, respectively, in ~. For this 
purpose we note that, if Qo is an operator on ~o, 
then its component in ~ is PQop. Thus we define 
creation and annihilation operators in ~ as the 
components of rx:A , rxrA given by 

a;A = Prx;AP ; arA = PrxrAP; (6) 

and, likewise, we define number and spin operators 
on ~ by 

It follows from these equations, together with (1)-(3), 
(5), and (6), that 

nrA = a;Aar)., nr = 2 a;).ar). ) 
), 

S = (s("') sty) s(z) 
r r' r , r 

= t (a~ar,_)., i).a~ar,_)., Aa;).arJ} 

and 
(7) 

The operators a*, a do not satisfy the normal 
Fermion anticommutation rules. In fact, it follows 
from Eqs. (1), (5)-{7), that the anticommutative 
algebra of these operators is given by 

(8) 

and 

As we shall henceforth be concerned only with 
operators on ~, and as P is the unit operator in that 
space, we may replace P by unity on the rhs of this 
last equation. Thus 

{a;A' ar, . ..} + = (1 - nr,_).)Orr'O A): 

+ .l( (x) ., (Y)" .so 
2 Sr - IASr Urr,UA,_).'· (9) 

Further important algebraic relations that follow 
from (7)-(9) are 

[a;)., nr'A'L = -a;).Orr'Ou' 1 
* (*., * * [a rA , srL = - ar,_)., IAar,_).' Aar).); 

and (10) 

and, also, the usual spin commutation rules 

[s ex) sty)] = is(z)O • [sty) sed] = is(x)o ) 
r , r' - r rr' , r' r' - r rr' 

and 
[s~z), s~~)L = is~Y)Orr" 

(11) 

In order to formulate the effective Hamiltonian for 
the model as an operator on ~, we first note that the 

component of Ho in that subspace is 

PHoP = R, say, 

i.e., by Eqs. (1)-(7), 

R = 2'tAa;+A,).ar). + 2'jASr+A' Sr + 2' kAnr+Anr · 
4,r,). 4,r 4,r 

This is not the effective Hamiltonian for the model, as 
it takes no account of virtual transitions from ~ to the 
complimentary space ~o - ~ that lead to renormal­
izations of the interaction parameters fA' jA, and k A. 
The effective Hamiltonian, H, is simply obtained by 
replacing those parameters by the corresponding 
renormalized quantities TA, JA, and KA in the above 
formula for R. Thus 

(12) 
with 

H T = 2' TAar:A,).ar).; H J = 2' J ASr+A • Sj.; 
A,r). A,r 

H K = 2' KAnr+Anr. 
(13) 

A,r 

The Hamiltonian H, like Ho' is appropriate when the 
atomic wavefunctions ({Jr are so highly localized that 
effective interactions arising from overlap of more 
than two of them may be neglected. In fact, Eqs. 
(12) and (13) represent the most general form for a 
Hamiltonian governing a system whose states are 
confined to ~, and for which overlap between three 
or more different atomic states is negligible. We shall 
henceforth treat TA, JA, and KA as the basic param­
eters of the model, rather than express8 these quan­
tities in terms of fA' jA' kA-recall that these latter 
parameters are themselves highly complicated quan­
tities, whose values involve certain renormalizations. 
Thus we would regard TA, JA, and KA as phe­
nomenological parameters whose values might be 
obtained by matching the properties of our model, as 
represented by Eqs. (7)-(13), to experimental data. 

The model is now entirely defined by Eqs. (7)-(13). 
It is evident that correlations due to the strong intra­
atomic forces that confine the state vectors to ~, 
are buili into the formulation of the model through 
the new anticommutation rules (8) and (9). 

III. THE CASE c = 1: MAGNETIC ORDERING 
AND MOTT INSULATION 

As no atomic state can be doubly occupied, it 
follows that in the case where the total numbers of 
electrons and atomic sites of the model are equal, 
i.e., where c = 1, the system is confined to states 
where each site is occupied by precisely one electron. 
In other words, the state vectors of the system are 
confined to a subspace of ~, namely ~(l), spanned 
by the set of vectors I > for which nr I > = I >, for 
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all r. Hence, by (7), (8), (10), and (13), 

H TI ) = 2' TAa:H, ... ar, ... nrH I . ) 
A,r,'" 

= 2' TAar:A,).nrHar). I ) 
A,r,). 

= 2' ,TAa:H,).a:H,).,arH, ... ,ar'" I ) = 0; 
A.r.).,'" 

and 
H K I ) = 2' KA I ). 

A.r 

Thus, by (12), H reduces to H J , apart from an 
additive constant, when acting on i)(1). Further, it is 
evident from Eqs. (11) and (13) that H J is simply the 
Heisenberg spin Hamiltonian which represents an 
insulating ferromagnet or antiferromagnet according 
to the value of JA • 

Consequently, in the case e = 1, the model is both 
a Mott-type insulator and a Heisenberg ferromagnet 
(or antiferromagnet). The reason for the insulation is 
simply that, in the present model, electrons cannot 
move onto sites that are already occupied, which they 
all are in the case e = 1. 

IV. THE CASE c < 1: CRITERION FOR 
FERROMAGNETISM 

We now consider the properties of the model for 
the case e < 1. For definiteness we restrict ourselves 
to consideration of ferromagnetic and paramagnetic 
phases where the states of the system possess the 
translational symmetry of the atomic lattice-this 
automatically excludes spin-density waveslO and other 
antiferromagnetic-type configurations from the theory. 
Our aim, then, is to obtain a criterion for which the 
ferromagnetic, rather than the paramagnetic, state, is 
stable. 

In view of the translational symmetry of the model, 
it is convenient to express its properties in terms of 
extended rather than localized wave operators. Thus 
we define 

where N is the total number of lattice sites and k 
represents a wave vector in the first Brillouin zone. 
We also define number and spin-density wave opera­
tors by the equations 

nk ... = N-
1 2 n .... e

ik
.
r
; nk = N-

1 2 nre
ik

.
r 
'} 

r r 

and 
Sk = N-1 ~ sreik'~ 

r 

10 A. W. Overhauser, Phys. Rev. 128, 1437 (1962). 

(15) 

It follows from (8)-(10), (14), and (15) that the ex­
tended wave operators satisfy the algebraic relations 

{a: ... , a: ... ,}+ = (bkk , - nk_k',_).)bu ' 

+ l( (xl" (y) )~ 
2" Sk-k' - IfLSk_k' u"'._"'" 

{a: ... , a:, ... ,}+ = 0, (16) 

* * ~ [a k ... , nk, ... ,L = -ak_k""'u ...... ,, 
* *. * , * [ak ... , sk,L = -(ak- k,,-;., 1Aak_k',_ ... , fLa k_k,,;). 

Further, by (13)-(15), the Hamiltonian components 
H T' H J, and H K may be expressed in terms of the 
extended wave operators by the equations 

H T = 2 T(k)a: ... ak;.; H J = N 2 J(k)Sk' S_k; 

with 

k). k (17) 
HK = N 2 K(k)nkn_k' 

I< 

T(k) = 2' TAeiH
; J(k) = 2' J AeiH; 

A A 

K(k) = ~' KAeiH 

A 

(18) 

The operator representing the total number of 
electrons of spin A is n;. = 2rnrA' i.e., by (7), (14), 
and (15), 

nA = 2 a:Aakl = N(nkA)k=O' (19) 
k 

The equilibrium statistical operator for the system 
will be taken to be 

p = Qexp -fJ{H - t,u;.n+ (20) 

where Q is a normalizing constant, fJ = (KBT)-l and 
,uA is the chemical potential governing the number of 
particles of spin A. The thermal average of an observ­
able Q will then be 

Q == (Q) == Tr(pQ). (21) 

We shall assume, as we may do without loss of 
generality, that the total electronic spin is N ~ directed 
along Oz. As the mean number of electrons per atom 
is e, it follows from (15) and (19) and the assumed 
translational symmetry that 

(Sk) = (0, 0, ~)bkO 1 
(n,,;,) = He + M)bkO == GAOkO ' 

and (22) 

The investigation of the properties of the model 
will be centered on the Green functions 

and 
Gklt) = (a:lt)akA) 1 
Gdt) = «a:A I akA»t, 

(23) 

where A(t) is the Heisenberg operator eiHtAe-iHt, 
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in units where n = 1, and 

i({A(t), B}+), for t > O} 
«AIB»t== o ,for t < O. 

(24) 

Following the general theory of Green functions 
(cf. Ref. 10, Chap. 1, Sec. 4), we express Gk;.(t) in 
terms of the Fourier transform of G+. Thus 

Gk;.(t) = 2 i: dwe iwt 1m GMw)[1 + exp (J(w - fl;.)t! 

(25) 
with 

Gt;.(w) = (217)-IL: dte-iwtGk;.{t). (26) 

We shall henceforth restrict the theory to the absolute 
zero of temperature ({J ---+ (0), as this will suffice 
for our purpose of obtaining a criterion for ferro­
magnetism. Thus we now rewrite (25) as 

(25') 

The energy of the system may be expressed in terms 
of the function G+(w), for it follows from (7)-(10) 
and (12)-(14) that 

(-i.E.. L a:;.Ct)akJ.) 
at kA 1=0 

== (-i.E.. L a:;.(t)a r ;.) == L [H, a;;.La,;. 
at r;' 1=0 rA 

== H T + 2H J + 2H K' 

Hence, by (12), (17), and (23), the total energy per 
atomic site is 

E = N-1(HT + H J + HI{) 

== (2N)-1 L [T(k)Gk;.{t) - iGk;.(t)]I=o, 
k;' 

i.e., by (25') 

E = N-1 i Ill;' dw(w + T(k» 1m G;!;.<w). (27) 
k;' -00 

Similarly, it follows from (19), (23), and (25') that 
the total number of electrons of spin A per atom is 

- L dw ImC:;.(w). 2 ill), 
N k -00 

Hence it follows from (19) and (22) that 

C;. = Hc + A~) = l L ill;' dw 1m ct;.(w). (28) 
N k -00 

This equation serves to relate the chemical potential 
to C and ~. 

It now remains for us to evaluate G+ and thence to 
express E as a function of ~ by means of Eqs. (27) 

and (28). For this purpose, we formulate the equation 
of motion for G+(t), which may be written, in view 
of (23) and (24), as 

-i(o/at)ct;.(t) = «[H, a:;.L I akA»t 

Hence, by (12), (16), and (17), 

. a + ( ) -I-Ck). t 
at 

+ <{a:;., a;'k}+)15(t). 

= L T(k')«a:;.(15kk, - nk- k,.-;.) I ak;.»t 
k' 

+ i L T(k')«a:._;.(si:!k' - iAsi~k') I ak;.»t 
k' 

+ 2.1. L J(k')«s!:~,a:_k',;.1 ak;'»1 
k' 

+ 2 L J(k')«(s~'"1, + iAs~~,)a:_k,.;.1 akA»t 
k' 

+ 2 L K(k')«n_k,a:.k'.; I ak;'»1 + (I - I1k._;.)15(t). 
k' 

We now employ a familiar decoupling procedure, 
replacing the field variables that multiply a* on the 
rhs of this equation by their average values. Hence, 
by (22) and (23), the equation simplifies to the form 

-i(o/at)ct;.(t) 

= [T(k)(l - c_;.) + 2MJ(O) + 2cK(O)]Gt;.(t). 

The Fourier transform of this equation is simply 

1 
CMw) = - [(1 - c;.)/w - T(k)(1 - c_;.) 

217 
- 2MJ(O) - 2cK(O) + i15], (29) 

where 0 is an infinitesimal real, positive, constant 
arising from the requirement that G+(t) is zero for 
t < O. It follows from this equation that, as the 
single-particle energies are given by the poles of 
G+(w), these energies are simply 

(1 - c;.)T(k) + 2MJ(O) + 2cK(O). 

In this expression, the factor (1 - c;.) represents a 
"band narrowing" due to restrictions imposed on the 
electronic motion by the exclusion of doubly occupied 
atomic states, while the terms UAJ(O) and 2ck(O) 
represent additional contributions to the energy of a 
particle due to its exchange and spin-independent 
couplings, respectively, to the rest of the electrons. 

It foHows from (27)-(29) that E and C;. are related 
to the chemical potentials by the formulas 

f
ll)' 

E = N-1 L dw[(1 - ic;.)w - MJ(O) - cK(O)] 
k)' -00 

X 15{w - 2AU(O) - 2cK(O) - (1 - c_;.)T(k)} 
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and 

f
ilA 

e A = N-1 ! (1 - c;) dw 
k -oc; 

x t5{w - 2J.~J(0) - 2eK(0) - (1 - c,)T(k)}. 

By changing the variable of integration, these equa­
tions may be rewritten as 

f
ll'A 

E = t (1 - c A) -00 dwP(w) 

x [(1 - tc;jw + J.U(O) + eK(O)] 
and (30) 

f
ll';' 

eA = (1 - e_A) -oc; dwP(w), 

where 

pew) = N-1 ! 15(01 - T(k» (31) 
k 

and the explicit form of the relationship between 
p~ and P;. need not concern us further. 

Now pew), as defined by (31), is the normalized 
density of states for a system of noninteracting 
particles, with Hamiltonian! Tf!,.rJ.;+t:..,;'rJ.rA , which we 
shall regard as a reference system. Equations (30) and 
(31) enable us to express the properties of the model of 
interest in terms of those of the reference system. Thus 
we note that the energy and particle number, per 
atom, corresponding to a spin direction governed by 
chemical potential f1. in the reference system are 

E = f:oc; wP(w) dW,) 

y = f:oc;p(W) dw. 

and (32) 

These equations define a functional dependence of P 
and E on y, i.e., 

and 
E = E(y) 1 
P = p(y). 

(33) 

It follows from (32) and (33) that 

dE/dy = p(y); d2E/dy2 = [P{p(y)}]-l. (34) 

On comparing (30) with (32) it follows that, corre­
sponding to (33), the solution of (30) is 

pJ. = p{e;./(1 - c;.)} 
and 

E = ! {(I - c;.)(1 - tC;.)E{e;./(1 - c;.)} 
;. 

+ (1 - c;.)(MJ(O) + eK(O»}, 

i.e., by (22), 

E = ~2J(0) + (1 - te - H) 
x (1 -!e - H) 
x E{(e - ~)/(2 - e - ~)} 

+ (1 - te + H)(1 - !e + H) 
X E{(e + ~)/(2 - e + ~)}, 

together with an additive term independent of ~. 

(35) 

The system will be ferromagnetic if E takes its 
minimum value for nonzero ~. A sufficient condition 
for ferromagnetism is therefore that 

(d2E/d~2)g~O < O. 

By Eqs. (34) and (35), this condition is equivalent to 

2J(0) + (1 - e)2(1 - te) .1 (1 - e) 
2P(Po)(1 _ te)3 + 2

E
O + (2 _ e) Po < 0 

(36) 
where 

Po = p{e/(2 - c)}; EO = E{c/(2 - c)}. (37) 

Let us now apply this criterion to two cases. 

Case (a) 

Consider the case where J(O):;!: 0 and pew) is 
uniform, i.e.~ 

pew) = (2T)-I, for -T < 01 < T} 

o elsewhere. 

It follows from (32) and (38) that, in this case, 

y = 1/2T(f.l + T), E = 1/4T(p2 - P) 

and, consequently, 

p(y) = T(2y - 1), E(Y) = Ty(y - 1). 

(38) 

Using these formulas for p(y), E(y), Eqs. (37) take 
the forms 

Po = T[(3e - 2)/(2 - c)], } 

EO = [2Tc(e - 1)]/(2 - C)2. 
(39) 

On inserting the values for P, Po, and EO given by 
Eqs. (38) and (39) into the condition (36), we see that 
this condition reduces to 

J(O) + [T(1 - c)2]/[4(1 - tC)2] < O. (40) 

This signifies that, for ferromagnetism, the exchange 
parameter J(O) must be negative and large enough in 
absolute magnitude to exceed the tunneling parameter, 
reduced by a factor proportional to (1 - C)2 as a 
result of the exclusion of doubly occupied atomic 
states. 

Case (b) 

We now consider the case where 1(0) = O. The 
purpose of this is to investigate whether, even in the 
absence of interatomic exchange forces, the combined 
effects due to intra-atomic correlations and electronic 



                                                                                                                                    

356 P. RICHMOND AND G. L. SEWELL 

itineracy can lead to magnetic ordering. It will be 
shown that, even with 1(0) = 0, the condition (36) 
can be fulfilled for certain forms of pew). In particular, 
we shall show that the condition can be fulfilled if the 
form of pew) has two suitably separated sharp peaks. 
This case is of physical interest since electronic 
densities of states in transition metalsll exhibit similar 
energy dependences. Our conclusions about this case 
will be in general agreement with Hubbard's.l 

We assume, then, that P take the form 

pew) = 2~ [p(w ~ To) + p(w ~ To) ] (41) 

where pee) takes its maximum value at e = 0 and 
possesses the following properties: 

p(O) = 1; (42) 

and 

L:dep(e) = 1; L:de epee) = 0; 

L: de e2p(e) = 1; 

(43) 

. 
pC) ! To) = 0 for Iwl > T, (44) 

where (- T, T) is the energy range of the band for the 
reference system. We also assume that 

To » Ll. (45) 

It should be pointed out that although we have 
assumed that the maximum and the dispersion of 
pee) are both equal to unity, it would actually suffice 
for our purposes if they were both of the order of 
unity, as distinct from To/Ll, say. In fact, throughout 
the following analysis, it will suffice to consider the 
orders of magnitude of the terms arising in the 
condition (36), bearing in mind the inequality (45). 

It follows from (41)-(45) that we have defined 
pew) so that it consists of two sharp peaks, each of 
height Ll-1 and width Ll, centered at w = ± To. 
Further, as it follows from this form of P and Eqs. 
(32) and (33), that .u(y) , the Fermi energy corre­
sponding to concentration y of the reference system, 
will lie within Ll of one of the centers, ± To, for all 
but very small ranges of y. Specifically, it will lie in 
the range (- To - Ll, - To + Ll) for 

y<L 
y, t - y?, LlITo· 

Hence, by (37) and (45), .uo will lie in (- To - Ll, 
-To + Ll) for 

c<i 
11 V. L. Bonch-Bruevich and S. V. Tyablikov, The Green Fllnction 

Method ill Statistical Mechanics (North-Holland Publishing Co .• 
Amsterdam, 1962), Chap. I. 

and 
c, i - c>LlITo. 

We shall assume henceforth that these latter condi­
tions on c are satisfied and, thus, that 

.u = - To + O(Ll). (46) 

Likewise, it follows from (32), (33), and (37), that, 
under the above conditions 

E = -To + O(Ll). (47) 

Let us now examine the terms involved in the 
condition (36). The first term is zero, as we are here 
considering cases where 1(0) = O. By Eqs. (41)-(45), 
the second term of (36) is 

,...., (1 - c)2(1 - tc) Ll 
- (1 - tC)3 ' 

(48) 

while by (46) and (47), the third and fourth terms of 
(36) add up to 

c:::: -(4 - 3c)/(2 - c)To. (49) 

Hence, as To » Ll-it is seen that the sum of the terms 
(48) and (49) is negative, which means that the 
condition (36) is fulfilled. 

V. CONCLUSION 

We have constructed a model of interacting elec­
trons in an atomic lattice that is designed for cases of 
strong intra-atomic coupling. This coupling serves 
to confine the electron-state vectors to a subspace, 
.£), of the Hilbert space, .£)0' kinematically available 
to them. Thus, the correlations due to intra-atomic 
forces are simply represented in terms of the algebra 
of operators on .£). 

These correlations lead directly to both magnetic 
ordering and Mott insulation for the case where c, 
the number of electrons per atom, is equal to unity. 
In cases where c < 1 (or 1 < c < 2), they tend to 
favor magnetic ordering, and, for certain forms of the 
energy dependence of the electronic density of states, 
they can lead to ferromagnetism without the aid of 
exchange forces. One such form [case (b) of Sec. IV] 
is qualitatively similar to those of "magnetic" electrons 
in transition metals. 
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A derivation of Fermi and Bose statistics is given, based on the general structure of quantum me­
chanics, togetner with a simple axiom of direct physical significance. The axiom concerns an operation, 
den~ted by " forming the union of two states; ~ 0 cp denotes the state of a compound system whose parts 
are m the states~ andcp. Let~ andcp denote I-particle states and assume: (a)~,cp exists whenever 
~ -L cp; (b) ~ , cp = cp , ~; (c) the transition probability between ~ 0 cp and ~' 0 cp' is zero if ~ -L~' 
and ~ -L cp', and (d) the product of the transition probabilities from ~ to~' and from cp to cp' if ~ -L cp' 
andcp -L ~'. It is then shown that, at least in so far as 2-particle states are concerned, the particles obey 
either Fermi or Bose statistics. 

1. INTRODUCTION 

In a recent review1 Dresden has drawn attention 
to the fact that the arguments generally put forward 
as establishing the existence of just two kinds of 
quantum statistics (Fermi-Dirac and Bose-Einstein) 
are usually invalid, or at best depend on assumptions 
which are not explicitly stated. He examines various 
arguments in detail and finds no compelling reason 
for the exclusion of "parastatistics," but remarks 
(p. 383): "It is conceivable that a more detailed and 
rigorous investigation of the mathematical character 
of the theory would show the impossibility of other 
statistics. It is also conceivable that an additional 
physical principle (preferably one which has a direct 
and transparent physical interpretation) leads to the 
desired exclusion." 

The present paper is intended as a contribution in 
this direction. We give a derivation of Fermi and 
Bose statistics from a minimum of assumptions. 
First, we assume the structure of general quantum 
mechanics with superselection rules. This is entirely 
conventional, and is given together with some 
mathematical preliminaries in Sec. 2. 

In Sec. 3 the characteristic feature of the present 
approach is introduced. As Dresden remarks (Ref. I, 
p. 395), it is a regrettable fact that most treatments of 
quantum statistics start with a description in which the 
particles are regarded as identifiable, while the 
essential indistinguishability is introduced only later: 
for instance, if 11p1(X) and 11p2(X) are two I-particle 
wavefunctions, then 11p(x1 , x 2 ) = l1pl(X1)1p2(X2) rep­
resents a state of a 2-particle system in which the 
first particle is in the state '11'1 and the second in the 
state '11'2' It is assumed that every 2-particle wave-

* This work was supported by a grant from the National Research 
Council of Canada. A large part of it was carried out while the 
author was a member of the Summer Research Institute of the 
Canadian Mathematical Congress. 

1 M. Dresden, 1963 Brandeis University Summer Institute 
Lectures in Theoretical Physics, Vol. 2. 

function is a linear combination of "product wave­
functions" of this type. Only then are arguments 
presented to show that, for anyone kind of particle, 
either only symmetric or only antisymmetric linear 
combinations of product wavefunctions occur. To 
express the same thing more abstractly. The Hilbert 
space H" representing states of the 2-particle system is 
initially assumed to be a subspace of the tensor product 
H' ® H', where H' is the Hilbert space of I-particle 
states; reasons are then given to show that H" must 
coincide with either the symmetric (Bose case) or the 
antisymmetric (Fermi case) subspace of H' ® H'. 
Not only is it clearly undesirable to pretend, even 
initially, that indistinguishable particles can be 
labeled, but it is unsatisfactory also to assume any 
direct relation between H" and H' ® H'. Both these 
defects are avoided in the present approach; indeed, 
even in treating two distinguishable systems, with 
Hilbert spaces J and K, we do not postulate any 
connection between the Hilbert space of states of the 
joint system (formed by uniting the two systems) and 
the tensor product J ® K. Instead the existence, under 
certain conditions, of a natural isomorphism between 
these two Hilbert spaces is deduced as a theorem. 

Naturally, we must replace the conventional assump­
tion about the relation between H" and H' by some 
alternative. It is necessary to embody in the mathe­
matics the physical fact that HI! corresponds to states 
of pairs of particles whose states as individuals are 
represented by elements of H'. This is done in the 
following way. 

First, observe that strictly speaking, a state is 
represented not by a vector '11', but by the ray ~ on 
which that vector lies. Now suppose that~ andcp are 
two I-particle states, i.e., elements of H' (by which we 
denote the set of all rays of H'). We then denote by 
~ ocp the 2-particle state (if such exists) in which 
there is a particle in state ~ and a particle in state cp; 
~ 0 cp is thus a ray of H". Our procedure is to put 
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forward as axioms certain physically plausible 
properties of 0; for instance, we clearly have ~ 0 cp = 
cp o~. 

Before proceeding to other properties of the 
operation 0, a remark should be made. It is clearly 
unwise to assume that ~ ocp always exists (consider, 
for instance, the Fermi case with ~ = cp). We make 
instead the weaker assumption that for certain 
systems which we call simple systems, ~ 0 cp exists 
whenever ~ ~ cpo This is reasonable, since there is, 
in a certain sense, no interference between orthogonal 
states. We can conceive of the possibility of both 
states being prepared simultaneously; such a simul­
taneous preparation constitutes a preparation of 
~ 0 cpo We assume, or better, define H" to be the small­
est Hilbert space which contains all rays of the form 
~ 0 cp with~ andcp rays of H'. 

The concept of the transition probability amplitude 
between states ~ and cp is defined in the usual way as 
<~,cp) = I<"P, cp)l, where "P and cp are unit vectors on 
the rays~ andcp; thus <~, cp)2 is the probability that 
a system in the state ~ will, when subjected to a 
cp measurement, be found in the statecp. Our assump­
tions concerning the operation 0 are expressed in the 
following axiom. 

Axiom 1.1: If~, ~/, cp, cp' are states of a simple 
system with \jI ~ cp and ~' ~ cp/, then 

(a) ~ 0 cp = cp 0 ~, 
(b) (~' 0 cp/, ~ 0 cp) = 0 whenever ~' ~ ~ and 

cp' ~~, 
(c) (~' 0 cp/,~ 0 cp) = (~/,~)(cp/,cp) whenever 

~' ~ cp and cp' _L~. 

The physical motivation for these postulates is clear. 
Thus (~' 0 cp/, ~ 0 cp)2 is the probability that the two 
particles will make transitions into the states ~ and 
cp, respectively. If both ~' and cp' are orthogonal to ~, 
then neither particle can make the transition to ~, 
so this probability must be zero. Similarly, if ~' cp 
and cp' ~~, only the particle in state ~' can make a 
transition to \jI and only that in cp' can make one to cp, 
the respective probabilities of these events being 
(~/, ~)2 and (cp/, cp )2. Our postulate then follows from 
the hypothesis that these events are independent, 
which is here particularly credible, since both ~ 
and ~' are orthogonal to both cp and cp'. 

In Sec. 3 a somewhat more detailed discussion of 
the operation 0 is given. The rest of the paper is 
devoted to showing that, at least in so far as the 
relation between H' and H" is concerned, every simple 
system obeys either Fermi or Bose statistics. More 
precisely, we show (Theorems 6.5 and 6.6) that there 

is a natural isomorphism U± between the symmetric 
(anti symmetric) subspace of the tensor product 
H' ® H' and H" such that, for any orthogonal 
vectors\jl andcp of H',~ ocp is the ray determined by 

the vector U ± [("P ® cp ± cp ® "P)/V2]. (The upper and 
lower signs refer to the Bose and Fermi cases, 
respectively.) 

The route to this result is somewhat devious, 
essentially because of the weakness of our axiom, 
which makes no assertion about the value of (~' 0 cp/, 
~ 0 cp), except in cases where the rays involved exhibit 
certain orthogonality relations. 

First, in Sec. 4, we introduce the concept of disjoint 
systems. Two systems, with Hilbert spaces J and K, 
are disjoint if ~ 0 cp exists whenever ~ and cp are 
states of J and K, respectively. For such systems we 
show (Theorem 4.2) that the usual representation of 
the union of the systems by the tensor product J ® K 
is justified. In proving this we require that the condi­
tions (b) and (c) of Axiom 1.1 hold whenever~ and\jl' 
are states of J and cp and cp' are states of K. An 
important case, and the only case in which we use 
this result, is where J and K are orthogonal subspaces 
of a simple system H'. Such a pair of systems is by 
definition disjoint. Moreover, in this case the require­
ment just mentioned is automatically satisfied as a 
consequence of the definition and Axiom 1.1. 

The technique involved in proving Theorem 4.2 
is similar to that used in the original proof of Wigner's 
theorem (Theorem 2.4). This theorem2 allows one to 
"lift" a given isometry V between ray spaces HI and 
H2 to a (linear or antilinear) isometry V between the 
corresponding Hilbert spaces, i.e., V is constructed 
so that \jI2 = V~I whenever "P2 = V"PI' Here we have a 
mapping U:J x K -- H given by U(~,cp) = ~ 0 cp 
and want to "lift" it to a corresponding mapping 
U J 1,-:J @ K -- H. By fixing either the first or the 
second variable, we get from U an isometry to which 
Wigner's theorem can be applied; then we use the 
vector mappings obtained in this way to construct 
the required mapping U J]{ . 

In this construction U JI{ is defined by giving its 
action on the elements of a (orthonormal) basis. 3 

This treatment, though mathematically inelegant, is 
convenient for two reasons: first, owing to the form of 
Axiom I.l, we are frequently concerned with orthog­
onal vectors; second, it suits the simplest description 
of the tensor product J @ K. If {"PJ and {CPk} are 
bases for J and K, respectively, then {"Pj @ CPk} is a 

2 E. P. Wigner, Group Theory (Academic Press Inc., New York, 
1959), pp. 233-236. See also V. Bargmann, J. Math. Phys. 5, 862 
(1964) and further references given there. 

3 Throughout the paper the term "basis" will be used as an 
abbreviation for "orthonormal basis." 
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basis for J 0 K. Similar remarks apply to the later 
sections of the paper. 

In Sec. 5 the same methods are applied to the case 
of two indistinguishable simple systems. Here the 
states of each system are represented by the rays of 
the same Hilbert space H'. (To deny this would be to 
admit the existence of an observable which takes 
different values for the two systems, i.e., to admit 
their distinguishability.) One cannot treat this case 
by simply putting J = K = H', since the mapping U 
which was, in Sec. 4, defined on J x K is not now de­
fined on H' x H'. Its domain consists only of those 
pairs {\jJ, <p} of rays of H' such that \jJ ~ <po For this 
reason the mapping U does not give us direct access 
to the tensor product H' 0 H'. If B = {1pi} is a basis 
for H', U gives the direction of the rays corresponding 
to the vectors 1pi 0 1pj only for i ~ j. Our procedure is 
therefore to work first only with the subspace (denoted 
H' 0 u H') of H' (2) H' for which these vectors form a 
basis. By methods similar to those of Sec. 4, though 
more complicated, we construct (Theorem 5.6) a 
linear mapping Un:H' 0 B H' -+ H" which "lifts" 
the mapping U, in that Uu (1p 0 rp) always lies on the 
ray \jJ 0 <po Of course, UB is not an isometry. For 
example, Uu( rp g rp) and UH ( rp 0 1p) both lie on 
\jJ 0 <p, whereas 1p 0 rp and rp 0 1p are orthogonal 
in H' 0lJ H'. We show, however (Theorem 5.7), 
that either, for every B, 1p, and rp, UB (1p 0 rp) = 
- UB(rp 01p) or, for every B, 1p, and rp, Un (1p 0 rp) = 
Un(rp ® 1p). In this way the Fermi and Bose cases 
appear. 

Section 6 is devoted to the construction of the 
mappings U_ and U+ in the Fermi and Bose cases, 
respectively. The Fermi case is much the easier, 
owing to the fact that H' (ii;u H' contains a basis for 
the antisymmetric tensor product H' 0_ H', which is 
the domain of the mapping U_. The construction of 
U_ is thus trivial (U_ = UB I H' @_ H'), although 
some work has to be done to show that it has the 
desired property even when 1p 0 rp does not lie in 
H' (ii;n H'. In the Bose case we have the problem, in 
constructing U+, of defining U+(1pi 0 1pi)' since 
1pi 0 1pi does not lie in the domain of UB • The difficulty 
is overcome by expressing 1pi 0 1pi as a linear combina­
tion of two vectors which lie in the domains of 
Uni} and UB',}, respectively, where Bij and B;j are 
certain bases closely related to B. 

It should be noted that our derivation of Fermi and 
Bose statistics from Axiom 1.1 applies only to the 
relation between I-particle and 2-particle states. 
Axiom 1.1 does not imply anything significant about 
a system of N particles for N > 2. In this connection, 
however, two points should be noted. First, Dresden 

(Ref. 1, p. 467) has shown that parastatistics must 
manifest itself already in the behavior of 2-particle 
states. It would seem, therefore, that parastatistics is 
incompatible with Axiom 1.1. Second, there is a 
natural generalization of Axiom 1.1 which may well 
suffice for a derivation of Fermi and Bose statistics 
valid for all N. We first make the physically natural 
postulate that 0 is associative and commutative when­
ever it is defined, and then define a simple system as 
one which, for every positive integer N, \jJ1 0 ••• 0 \jJ.v 
exists whenever \jJI' ... ,\jJ,y is an orthogonal set. 
We then postulate. 

If \jJ1 , ... ,\jJ,y and<pu ... ,<P.v are two orthogonal 
sets of states of a simple system (N being any positive 
integer), then 

(i) (\jJ1 0 • • • 0 \jJ N ,<PI 0 • • • 0 <P x) = 0 
if\jJ1 ~ <Pi for 1 Sis N, 

(ii) (\jJ1 0 ••• 0 \jJ"" <PI 0 ••• 0 <P.v) 
= (\jJI,<Pl>(\jJ2,<P2>'" (\jJ.""<Pl\') 

if\jJi -.l <pj whenever i ~ j. 

2. QUANTUM MECHANICS WITH 
SUPERSELECTION RULES 

First some mathematical preliminaries. 

Definitions 2.1: Let H be a complex Hilbert space 
with inner product < , ) (assumed linear in the second 
variable). Any vector 1p in H determines a I-dimen­
sional subspace or ray denoted ray 1p or \jJ. Let H 
denote the set of all rays in H. In H we define a 
scalar product by 

(\jJ,<p) = 1(1p, rp)I/«1p, 1p)(q;, q;»1 

and the distance or angle d( \jJ, <p) between \jJ and <P by 
d(\jJ, <p) = cos-I (\jJ, <p). We say \jJ and<p are orthogonal 
if (\jJ, <p) = 0 and write \jJ -.l <po H is then a complete 
metric space. Any metric space which is isomorphic 
to H for some H will be called a ray space, and H will 
be called a representative of H. By the dimension 
dim H of the ray space H we mean dim H and by a 
subspace of a ray space we mean a subset which is 
also a ray space. 

Definitions 2.2: Let Hand K be Hilbert spaces and 
U a mapping from H into K. Then, 

(a) U is linear if U(a1p + brp) = aUrp + bUrp, 
(b) U is antilinear if U(a1p + brp) = aU1p + burp, 
(c) U is an isometry if /I U1p - Urpl/ = 1/1p - rpil, 

where in each case the relation holds for all 1p and rp 
in H and all numbers a and b. 

Definition 2.3: Let H be a Hilbert space and let 
1p -+ 1p* be a one-to-one correspondence of H onto a 
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set H*. Now make H* a Hilbert space by setting 

tp* + q;* = ('P + q;)*, 

a'P* = (a'P) * , 
<'P*, q;*) = ('P, q;), 

for all numbers a and elements 'P, q; of H. Then H* 
is the complex conjugate of H. Clearly 'P -+ 'P* is an 
anti linear isometry. One may regard Hand H* as the 
same set with the same law of addition, but with the 
complex conjugate law of multiplication by numbers 
and inner product. With this understanding the Hilbert 
spaces Hand H* determine the same ray space, 
H=H*. 

If Hand K are Hilbert spaces, a linear or antilinear 
isometry U:H -+ K defines in an obvious wayan 
isometry V:H -+ K. Conversely, 

Theorem 2.4 (Wigner's theorem): Let Hand K be 
Hilbert spaces with dim H ~ 2. Let T be an isometry 
of H into K. Then there exists either a linear isometry 
U or an antilinear isometry U (but not both) from H 
onto a subspace K' of K such that V = T. Moreover, 
U is unique up to a phase factor. We say that T:H-+ 
K is lifted to U: H ---+ K. 

For brevity we omit a proof.2.4 

Corollary 2.5: Let K be a Hilbert space and H be 
a ray space contained in K. Then K' = {'P E K: ~ E H} 
is a closed subspace of K. 

Proof" The identity map of H into K is an isometry 
and so can be lifted to a linear or antilinear isometry 
of H onto the closed subspace K' of K. 

Taking H = K, we obtain, 

Corollary 2.6: There are, up to isomorphism, 
exactly two Hilbert spaces representing any given ray 
space of dimension ~2, and these are complex con­
jugates of each other. 

Let Hand K be ray spaces with dim H ~ 2, and V 
be an isometry of H into K. If specific Hilbert spaces 
Hand K representing Hand K have been selected, 
we can assign a type (linear or antilinear) to Vaccord­
ing to whether the mapping U:H ---+ K, obtained by 
lifting V, is linear or anti linear. In the absence of a 
specific choice of Hand K, no type can be assigned 
to a single V, but we can still say, of two isometries 
VI and V 2 , whether or not they are of the same type. 

4 More details of some of this work are given in mimeographed 
lecture notes available from the author on request. 

The situation is sharper if H is a subspace of K. 
Then we naturally require that H be chosen as the 
corresponding subspace of K and each isometry 
V: H ---+ K has a unique type. The identity map is 
clearly of linear type. We might suspect from this 
that every isometry of H into K which differs little 
from the identity is also of linear type. This conjecture 
is established in a strong form in the following theorem. 

Theorem 2.7: Let K be a ray space, H a subspace of 
K of dimension ~ 2, and V:H -+ K an isometry of 
anti linear type. Then there is a ray ~ in H with 
V~~~. 

Proof" Let 'PI and 'P2 be fixed linearly independent 
vectors in H and put 'P = a'Pl + b'P2. Then (U'P, 'P) 
is a homogeneous quadratic function of a and band 
therefore vanishes for some pair of complex numbers 
a, b not both zero. 

We now state an axiom which describes the structure 
of conventional quantum mechanics with super­
selection rules. Because we shall be discussing the 
process of "uniting" systems to form larger systems, 
the ray space H which is now introduced should be 
regarded as a "global ray space" containing rays 
corresponding to every state of every system. 

Axiom 2.8: There is a Hilbert space H which is a 
direct sum H = ttl Hi of a set of orthogonal sub­

iE[ 

spaces called coherent subs paces such that: 
(a) Every state of every system is represented by a 

unique ray in H lying in a coherent subspace; every 
ray which lies in a coherent subspace represents a 
physical state. 5 (We shall call these rays physical rays.) 

(b) Every observable is represented by a Hermitian 
operator on H which commutes with all the projections 
on the coherent subspaces; conversely, every such 
Hermitian operator represents an observable. 

(c) The expectation value of an observable A in a 
state ~ is ('P, A'P), where 'P is a unit vector on the 
ray~. 

If A is the projection on a physical ray cp, then by 
(c) its expectation value is I('P, tp)12 = (~,cp)2; thus 
(~,cp)2 gives the probability that a system prepared 
in the state~ will, when the appropriate measurement 
is made, make a transition into the state cpo 

It should be noted that the physically significant 
object is the ray space H. In ordinary quantum me­
chanics, where the set I contains only one element, 

5 It is possible' to deduce this structure of physical rays from the 
following hypothesis: If two physical rays a~e non?rthogonal, 
then every ray in the subspace spanned by them IS phYSIcal. 
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there are (by Corollary 2.6) two possible choices for 
the Hilbert space H representing H. For quantum 
mechanics with superselection rules, the arbitrariness 
in H is much greater; for each i in I we may independ­
ently choose for Hi one of the two possible Hilbert 
spaces which represent Hi and then set H = EEl Hi' 

iE[ 

A final word concerning our use of the term 
"system." For mathematical purposes it is sufficient 
to identify a system with the set of all its states, 
i.e., with a subset of H. In agreement with the con­
vention in quantum mechanics that the states of a 
system are represented by the rays of a Hilbert space, 
we adopt the following definition. 

Definition 2.9: A system is a closed subspace of H 
consisting entirely of physical rays (i.e., it is a closed 
subspace of a coherent subspace). 

3. UNION OF STATES 

In any experiment in which the interaction of two 
systems is under study, for example in a scattering 
experiment, the first step consists of the preparation 
of the two systems. This involves the simultaneous 
preparation oftwo states ~ andcp, one for each system. 
We must assume that procedures for the preparation 
of these states are known; the new feature consists of 
the requirement that the two states be prepared 
simultaneously. The design of the experiment thus 
requires, among other things, the discovery of suitable 
methods of preparation of the two systems-methods 
which do not interfere with each other. For many 
pairs of states ~,cp, such a pair of compatible methods 
of preparation exists; we then denote by ~ a cp the 
state which is prepared in this way by simultaneously 
preparing the states ~ and cp and call it the union of~ 
and cp.6 When ~ a cp exists we shall call the states 
~ andcp disjoint. 7 

It is likely that, unless ~ and cp are orthogonal, 
~ 0 cp will not exist (see Sec. 1). We shall accordingly 
only contemplate the formation of unions in the case 
of orthogonal states. However, orthogonal states are 
not necessarily disjoint. Suppose, for instance, that 
~ and cp are states of a hydrogen atom; suppose that 
in both cases the proton is in a given state (for instance 
an eigenstate of momentum), while the electron is, 
in ~, in the ground state, and, in cp, in the first 
excited state. Then ~ -1 cp, but it seems probable that 
~ a cp does not exist, since its preparation would 

6 See, R. Giles, Mathematical Foundations of Thermodynamics 
(Pergamon Press, Inc., Oxford, England, 1964), where essentially 
the same operation of union is denoted by .. +." 

7 This is a generalization of the concept strongly orthogonal, 
used in work on the many-body problem in quantum mechanics. 
See, for instance, A. J. Coleman, Rev. Mod. Phys. 35, 68 (1963). 

involve the simultaneous preparation of two protons 
in the same state. 

This possibility-that two states can be orthogonal 
but not disjoint-clearly arises from the fact that the 
system involved is a composite one; for a single 
electron, for instance, no analogous example presents 
itself. We shall regard this as a characteristic feature 
of a composite system and adopt the following 
definition. 

Definition 3.1: A system is simple if every pair of 
orthogonal states is disjoint. 

Axiom 1.1, on which our derivation of quantum 
statistics depends, applies only to simple systems. It 
is easy to give examples of composite systems for 
which it does not hold4 ; thus the derivation does not 
apply to such systems. On the other hand, this is as it 
should be since composite systems only obey Fermi 
or Bose statistics, if at all, in an approximate way. An 
assembly of hydrogen atoms, for instance, obeys 
Bose statistics only in so far as the exchange of 
electrons can be neglected. 

4. UNION OF DISJOINT SYSTEMS 

Extending the terminology introduced in Sec. 3, 
we shall call two systems (with ray spaces) J and K 
disjoint if~ a cp exists whenever~ is in J andcp is in K. 
For the purposes of this section only we shall assume: 

Axiom 4.1: The conditions of Axiom 1.1 are satis­
fied whenever ~ and ~' belong to J, and cp and cp' 
belong to K, J and K being disjoint systems. 

In subsequent sections we shall be concerned only 
with the case where J and K are orthogonal closed 
subspaces of a simple system H'; in this case the 
assertion of Axiom 4.1 follows from Axiom 1.1. 

This section is devoted to proving the following 
theorem, which justifies the customary representation 
of the Hilbert space corresponding to the union of 
two disjoint systems as the tensor product of the 
Hilbert spaces corresponding to the separate systems. 
Throughout, H denotes the global Hilbert space 
introduced in Axiom 2.8. 

Theorem 4.2: Let J and K be disjoint systems and 
for each ~ in J and cp in K, let U(~,cp) = ~ 0 cpo 
Then Hilbert spaces J and K representing J and K 
can be chosen in such a way that there is a linear 
isometry U JK:J ® K -+ H such that, for every 1p in J 

and 'P in Kwith 1p ~ 0 and 'P ~ 0, 

U(~,cp) = ray UJK (1p ® 'P), 

and UJK is unique up to a phase factor. Further, for 
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any 'P, 'P' in J and qJ, qJ' in K, 

(UJK('P @ qJ), UJK('P' @ qJ'» = ('P, 'P')(qJ, qJ'). 

Proof" The proof is via a series of lemmas. Through­
out, tjJ and q», with or without embellishments, 
denote arbitrary elements of J and K, respectively. 
We first observe that J and K, being disjoint, are 
orthogonal so that Axiom 1.1 gives 

Lemma 1: For any tjJl' tjJ2' q»1' q»2 , 

(tjJl 0 q»1 ,tjJ2 0 q»2) = (tjJl' tjJ2)( q»1 , q»2)' 

Lemma 2: The range of U lies in a single coherent 
subspace. 

Proof" Let tjJ1' tjJ2' q»1' q»2 be given. Choose tjJ 
nonorthogonal to both tjJl and tjJ2' and q» nonorthog­
onal to bothq»l andq»2' Then, by Lemma 1, each ray 
in the following sequence is nonorthogonal to the 
next: tjJl 0 q»1, tjJ 0 q», tjJ2 0 q»2' Thus all these rays must 
lie in the same coherent subspace. 

Lemma 3: Let G denote the ray space spanned by the 
range of U. Let U(tjJ'):K-+G be defined for each 
tjJ in J by U(tjJ ')q» = tjJ 0 q». Then U(tjJ .) is an isometry. 
Moreover, the type (linear or antilinear) of U(tjJ·) 
is the same for every tjJ in J. 

Proof" That U(tjJ·) is an isometry follows from 
Lemma 1. Next, for anytjJl andtjJ2' U(tjJl ')[U(tjJ2 .)]-1 
is a mapping of the subspace U(tjJ2 ')K of G into G 
and if 8 = tjJ2 0 q» is any element of U(tjJ2 ')K, then 

(U(tjJl ')[U(tjJ2 .)]-18, 8) = (tjJl 0 q»,tjJ2 0 q») 

= (tjJ1' tjJ2)' 

Now Lemma 3 clearly holds if dim K = I, so we may 
assume dim K ~ 2. But then, by Theorem 2.7, if 
(tjJ1' tjJ2) ¥: 0, U(tjJl ')[U(tjJ2 .)]-1 is of linear type, so 
that U(tjJl .) and U(tjJ2') are of the same type. The 
same must apply even if (tjJ1' tjJ2) = 0, since we can 
always choose tjJ3 nonorthogonal to both tjJl and tjJ2 . 

In the same way we prove 

Lemma 4: Let U('q»):J -+ G be defined for eachq» 
in K by U('q»)tjJ = tjJ 0 q». Then U('q») is an isometry 
and its type is independent of the choice of the rayq». 

Now let a Hilbert space G representing G be chosen 
arbitrarily. Then choose Hilbert spaces J and K 
representing J and K in such a way that all the 
mappings U(tjJ·) and U('q») are of linear type.s 

8 If, instead, the spaces J and K are prescribed in advance, the 
mapping U will belong to one of four types. If all the mappings 
U('cp) are of linear (antilinear) type, we say U is a/linear (antilil/ear) 
type in the first variable, and similarly for the second variable. 

Next, for each unit vector 'P in J, let U J K( 'P .): K -+ G 
denote a linear isometry obtained by lifting the 
isometry U(tjJ .); i.e., UJK('P') satisfies 

ray U JK('P ')qJ = U(tjJ ')q» = tjJ 0 q», 

for every vector qJ in K. Similarly, for each unit 
vector qJ in K, let U JI .. (' qJ):J -+ G denote a linear 
isometry obtained by lifting the isometry U(· q»). By 
Wigner's theorem the operators U JI .. ( 'P .) and 
U JI .. (' qJ) all exist, and each is arbitrary up to a 
phase factor. 

We now use these operators to construct the 
operator U J K:J @ K -+ G of the theorem. Let 
{'Pj:j E 3} and {qJk:k E J{,} be bases in J and K.3 Then 
{'Pj 0 qJk:j E 3, k E J{,} is an orthogonal set of rays in 
G.9 Let 91k denote a unit vector on the ray tjJj 0 q»k' 
We now choose the phases of the ()jk and of the linear 
isometries U J K( 'Pj .) and U J K(' qJk) as follows: 

Choose ()n arbitrarily. 
Choose UJK(- qJ1) so that UJI .. (· qJ1)'P1 = ()n' 

For j ¥: 1, choose ()j1 so that UJK(' qJl)'Pj = ()il' 

For eachj, choose UJI .. ('Pj·) so that UJK('Pj ')qJ1 = 
() 11 . 

For k ¥: 1, choose ()jk so that UJK('Pj ')qJk = ()jk' 
Henceforth let 'P = ~j aj'Pj and qJ = Ik bkqJk 

denote arbitrary un,it vectors in J and K, respectively, 
and le~ () = ~1.k Cl k()jk + e, where for every j and k 
()lk -.l (), be a unit vector on the ray 8 = tjJ 0 q». We 
shall show that by suitably choosing the phase of () 
we have cjk = ajbk for every 'P and qJ. 

Lemma 5: For each j, k, cjk = tikajbk , where 
Itikl = I; also {j = O. 

Proof: By Lemma 1, (tjJj oq»k' tjJ oq») = (tjJj,tjJ) X 

(q»k,q»), which gives !ejkl = lajllbkl. It follows that 
Ijk Cik()jk is a unit vector, whence e = o. 

The phase factor ljk may be expected to depend on j 
and k. If the pair ('P, qJ) is such that it does not, then a 
suitable choice of the phase of () will yield ljk = 1 and 
so Cjk = ajbk • Let us denote by 'Y the set of all pairs 
('P, qJ) for which this is so. Since U J K(- qJ1) is linear 
and U J K(' qJ1)'Pj = ()j1 for every j, ('P, C(1) E 'Y for 
every 'P. Since UJK('Pj') is linear and UJK,('Pj' CPk) = 
()jk for every k, ('Pj' cp) E'Y for every cpo We can now 
prove 

Lemma 6: For every 'P and cP, ('P, cp) E 'Y. 

• Throughout this section an index j will range always over the 
set a and k over .}l" We do not assume these sets to be countable; 
nevertheless, we denote by I a particular element (chosen once and 
for all) of either set. 
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Proof: Case 1: bi :;t= O. Since, for any j, ("Pi' ({J) E'F, 
the equation (~i 0 cp,~ 0 cp) = (~i'~) yields 

l<tbkeik'~tika;bke;k>1 = la;l, 
i.e., 

It hkbktiklla;1 = la;l. 

Now tik is only defined if aj :;t= 0 and bk :;t= 0, s? we may 
restrict attention to such j and k. Also! bkbk = 1. 
It follows that, for each (such) j, tik is independent of 
k. Let us write tik = t;. 

In the same way we can show, using the fact that 
{"P, ({JI} E '1", that Ii is independent of j. Thus lik is 
independent of j and k. 

Case 2: bl = O. This may be treated as a limiting 
case of Case 1 or we may proceed as follows. Let 

({J' = «({JI + ({J)/li. Then {"P, ({J/} E '1", by Case 1. 
Using this fact, an argument of the same type as that 
used for Case I shows that tik is independent of j and k. 

The proof of Theorem 4.2 is now easily completed. 
Define a linear isometry UJK:J ® K - G by setting 
UJK("P; ® ({Jk) = eik' Then for every "P and ({J 

UJI~("P ® ({J) = !aibkUJK("P; ® ({Jk) = !a;b/Jik , 
ik ik 

which, by Lemma 6, lies in the ray ~ 0 cpo Thus U JK 
has the required property. 

To establish the uniqueness (up to a phase factor) 
of U JK, we need merely note that if U~K is any linear 
isometry satisfying the condition of Theorem 4.2, 
then the restriction of U~K to the subspace J ® ({JI 

of J ® K determines the same ray mapping of J into 
G as does U J K(' ({JI)' It follows from Wigner's theorem 
that, by altering U~K (if necessary) by a phase factor, 
we can make these isometries coincide so that, in 
particular 

U~K("P; ® ({JI) = U JK(' ({JI)"Pi = eil for allj. 

Similarly, for eachj, the restriction of U~K to the 
subspace "Pi ® K of J ® K determines the same ray 
mapping of K into G as does UJK("Pi '). Moreover, 
these isometries now agree at ({J = ({JI' so they 
coincide. In particular 

U~K("Pi ® ({Jk) = U JK("Pj")({Jk = eik = U JIc("Pi ® ((Jk)' 

Thus the linear isometries U~K and U JK agree on a 
basis of J ® K and consequently coincide. This 
completes the proof of uniqueness. 

Lastly, the final statement in Theorem 4.2 now 
follows at once from the definition and linearity of 
UJK •· 

5~ SIMPLE SYSTEMS 

In the rest of the paper H' denotes a simple 
system, and ~,cp denotes arbitrary rays in H'. We 
shall study the mapping U defined by 

U(~,cp) = ~ 0 cp, 

whose domain is the subset {{~,cp}:~ E H/,cp E H', 
~ ..l cp} of H' x H'. Let H" be the subspace of H 
spanned by the range of U. We shall call H' and H" 
I-particle and 2-particle space, respectively. Let H' 
and H" be Hilbert spaces representing the ray spaces 
H' and H".lo 

Let J and K be orthogonal proper subspaces of H', 
and let U J K denote the restriction of U to J x K. 
J and K are disjoint systems so the mapping U JK can 
be assigned a "type." 8 Let J 1. denote the orthogonal 
complement of J in H'. We shall say J is of linear 
(antilinear) type if U JJ 1. is of linear (antilinear) type 
in the first variable. If dim J = I, J is of both linear 
and anti linear type; if dim J ~ 2, J is of one type 
only. 

If J I and J 2 are any subspaces of H', the types of 
J I and J 2 of course depend on the choice of H' and H", 
but the validity of the statement "JI and J 2 are of the 
same type" is independent of that choice. We now 
prove: 

Theorem 5.1: If dim H' ~ 4 and J I , J 2 are any 
proper subspaces of H', then J I and J 2 are of the same 
type. 

Proo/" Since the type of J is that of the mapping 
from J into H" given by ~ - ~ 0 cp, where cp is an 
arbitrary element of J 1., any proper subspace of H' 
containing J has the same type as J. Let J~, J~ be 
subspaces of H' of codimension I containing J I and 
J 2 , respectively. Then dim J~ (") J~ ~ 2. It now 
follows that in the following sequence each subspace 
is of the same type as the next: J I , J~, J~ (") J~, J~, J 2 • 

Since all these spaces except possibly J I and J 2 have 
dimension exceeding I, J I and J 2 are of the same type. 

We shall henceforth assume the representative H" 
of H" to be chosen so that every proper subspace of 
H' is of linear type. 

10 By Corollary 2.6 there is a two-fold choice in the selection of 
both H' and HN; however, as we shaH see shortly, the choice of HN 
will be matched to that of H' in a certain way. It foHows that if 
H' and HHlie in the same coherent subspace and if H' is chosen to be 
isomorphic to a subspace of the global Hilbert space H, then HN 
may (in so far as our axioms are concerned) turn out to be isomorphic 
to the complex conjugate of a subspace of H. However, considera­
tions beyond the scope of this paper (for instance, the existence of 
a lower bound to the energy) may be invoked to rule out this 
possibility. 
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Theorem 5.2: Let J, K be orthogonal proper 
subspaces of H'. Then there exists a linear isometry 
UJK:J ® K - H" such that, for any 'Ip in J and ({! 

in K with 'Ip ~ ° and ({! ~ 0, 

tY 0 cp = ray UJK('Ip ® ((!). 

Moreover, UJK is unique up to a phase factor. 

Proof' Since J is ofIinear type, U JK is of linear type 
in the first factor. Since U(tY,cp) = U(cp,ty), it is also 
of linear type in the second factor. The result now 
follows from Theorem 4.2. 

Definition 5.3: Let B be any orthonormal set in H'. 
We say a subspace J of H' is compatible with B if a 
subset of B is a basis for J. We say {J, K} is an orthog­
onal pair of subs paces compatible with B if J and K 
are orthogonal proper subspaces of H', both compat­
ible with B. We say {'Ip, ({!} is an orthogonal pair of 
vectors compatible with B if there exists an orthogonal 
pair of subspaces {J, K} compatible with B, such that 
'Ip E J and ({! E K. 

We are now going to amalgamate into a single 
mapping UB the mappings U J K for all orthogonal 
pairs of subspaces {J, K} compatible with B. 

Definition 5.4: We shall say that two linear map­
pings agree if their restrictions to the intersection of 
their domains coincide. (Note that "agree" is not an 
equivalence relation.) The term agree up to a phase 
factor wiII be used in the same way. 

Theorem 5.5: Let B = {'lpi: i E J} be an orthonormal 
set in H'. Let {J, K} and {J', K'} be two orthogonal 
pairs of subspaces compatible with B. Then, 

(i) (J ® K) ('\ (J' ® K') = (J ('\ J') ® (K ('\ K') 
and 

(ii) U JI~ and U J'K' agree up to a phase factor. 

Proof: (i) Let {'lpj:j E a} be a basis for J and define 
a', J(" J(,' similarly. Then a basis for J ® K is {'lpj ® 
'lpk:j E a, k E J(,} and similarly for J' ® K'. Hence a 
basis for (J ® K) ('\ (J' ® K') is {'Ip; ® 'lpk:j E a ('\ a' , 
k E J(, ('\ J(,'} and this is also a basis for (J ('\ J') ® 
(K ('\ K'). 

(ii) By (i) the intersection of the domains is 
(J ('\ J') ® (K ('\ K'). But on this restricted domain 
the mappings UJK and UJ'K' both induce the ray 
mapping UJroJ'.KroK" The result now follows from 
Theorem 4.2. 

We shall make use of the following notation. Let B 
be any orthonormal set in a Hilbert space L. Then we 

denote by L ®B L the closed subspace of L ® L 
spanned by {'Ip ® ({!:'Ip E B, ({! E B, 'Ip ~ ({!}. 

Theorem 5.6: Let dim H' ~ 5. Let B be an ortho­
normal set in H' with at least three elements. Then there 
exists a linear mapping U B: H' ® B H' - H" such that, 
whenever {'Ip, ({!} is an orthogonal pair of unit vectors 
compatible with B, then UB('Ip ® ({!) is a unit vector 
on the ray ty 0 cp.u Further, Un is unique up to a 
phase factor. 

Proof Let B = {'lpi: i E J}. Let L be the subspace 
spanned by B, and for each i in J let Li be the 1-
dimensional subspace spanned by 'lpi. 12 

We first establish uniqueness. Let UB and U'n both 
satisfy the conditions of the theorem. Then, for 
j ~ k, U'n('lpj ® 'lpk) = tjkUB('lpj ® 'lpk)' where Itjkl = 1. 

We shall show that all the phase factors fjk,U ~ k) 
are equal. First note that, for any j' ~ k, Ijk = tj'k; 

this follows from the fact that both U B and U~ 
agree up to a phase factor with U L/J3L;'.Lk' Similarly, 
for any k' ~ j, tjk = t;k" Then note that we can, by a 
sequence of two or three changes, each affecting only 
the first or last index, pass from any pair j, k to any other 
pair j', k'. (Here essential use is made of the condition 
dim L ~ 3; otherwise we could not establish that 
t12 = t21') It follows that all the phase factors t;k 
are equal, so that UB and U'n agree up to a phase 
factor. 

To establish the existence of UB' we first observe 
that it is sufficient to consider the case dim L ~ 5, 
for if B' c B, then UB I H' ®B' H' satisfies the con­
ditions required in the theorem for UII ,. Henceforth, 
then, we assume dim L ~ 5. Let 'lp1, ... , 'Ips denote 
five elements of B. 

We shall choose the phase of U J K for various 
orthogonal pairs {J, K} of subspaces compatible with 
B in such a way that the selected U JI~ agree with 
each other. 

First choose arbitrarily a unit vector 012 on the ray 
812 :;= tYl 0 tY2' We shall say that the pair {J, K} is 
of type 1 if J =:> L1 and K =:> L2 ,l3 For each such 
{J, K}, fix the phase of U J K by setting U J K(IPl ® 
'lp2) = 012 , By Theorem 5.5 we have at once: 

Lemma 1: If {J, K} and {J', K'} are of type I, then 
UJK and UJ'K' agree. 

11 By Theorem 5.2 this is equivalent to the condition that, when­
ever {J, K} is an orthogonal pair of subs paces compatible with D, 
UJK agrees up to a phase factor with UB • 

12 Henceforth the indices i, j, k take values in J. 
13 In the rest of the proof the expression "orthogonal pair of 

subspaces compatible with D" will normally be abbreviated to 
·'pair." 
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We shall say the pair {J, K} is of type 2 if, for some 
{J, K} of type 1, J c J and K c R. Equivalently 
{J, K} is of type 2 if L2 ¢ J and Ll ¢ K. (Note that 
every pair of type 1 is also of type 2.) We choose the 
phase of U JK for each {J, K} of type 2 by first choosing 
{J, K} of type 1 with J c J and K c K and then 
putting U J K = U:; 'K I J.® K. By Lemma I this 
specification of U J K is independent of the choice of 
J and K. 

Lemma 2: If {J, K} and {J', K'} are of type 2, then 
U JK and U J'K' agree. 

Proof' Let {J, K} and {j', K'} be corresponding 
pairs of type 1 selected as above. Then U;'K and 
U:;'lc agree by Lemma I and their domains contain 
those of U JK and UJ'K' , respectively. 

We shall say the pair {J, K} is of type 3 if, for some 
{j, K} of type 2, .J = JED L2 and K = KED L 1 • 

(J and K are uniquely fixed by J and K and neither 
J nor K contains Ll or L2') For each pair {J, K} of 
type 3, we choose the phase of UJK so that 

uJKIJ@K= U:;K' 

Lemma 3: If {J, K} is of type 3 and {J', K'} is of 
type 2, then U JK and U J'K' agree. 

Proof' Let J = J ED L2 and K = K ED Ll . The 
intersection of the domains of U J K and U J' K' is 
contained in J ® R. By Lemma 2 and the definition 
of U JK , both U JK and UJ'K' agree with U:;'K when 
restricted to this intersection. 

Lemma 4: If {J, K} and {J', K'} are both of type 3, 
then U JK and UJ'K' agree. 

Proof: Let J = J ED L 2 , K = K ED L1> l' = J' ED L 2 , 

K' = K' ED L1 , where J, K, J', K' all contain neither 
Ll nor L 2 • By Theorem 5.5 it suffices to show that 
U JK and UJ'IC coincide at one (nonzero) point in 
the intersection of their domains, namely [(J n J') lB 
L21 ® [(K n K') ED Ll1. We consider two cases. 

Case 1: dim (J n J1) ~ I and dim (K n K') ~ 1. 
Let "P E J n J' and cp E K n K' be nonzero vectors. 
Then in the following sequence each mapping agrees 
with the next at the point "P ® cp: U JK' U:;K' U:;'K" 
UJ'K" 

Case 2: dim (J n J') = 0 or dim (K n K') = O. 
By symmetry it suffices to treat the case dim (J n J') = 
O. Since J and J' are proper subspaces of L compatible 
with B, they each contain at least one element of B 
which we may without loss of generality assume to be 
"Ps and "P4' respectively. Let Ka and K4 be the orthog-

onal complements of L3 ED L2 and L4 ED L2 in L. 
Then, by Case I, each mapping in the following 
sequence agrees with the next: 

Moreover, the domains of all these isometries contain 
"P2 ® "PI' Hence U JI\: and U J' K' agree. 

We can condense Lemmas 1-4 as follows. Let us say 
a pair {J, K} is of type 23 if it is of type 2 or of type 3, 
Then we have shown: 

Lemma 5: If {J, K} and {J' , K'} are both of type 23, 
then U J K and U J' K' agree. 

We now use this collection of U J KS to define a 
linear mapping UB:H' ®B H'-+ H". For each pair 
{"Pi' "Pk} (j '# k) of elements of B, we can always 
choose a pair {J, K} of type 23 such that "Pi @ "Pk E 

J @ K [e.g., if j '# 2 and k '# I, take {L j , L k }, which 
is of type 2; if j = 2 and k '# 3 (say), take {L2 E8 L3 , 

Ll E8 Lk E8 L4 }, which is of type 3]. Now define 
() ik = U JK( "Pi @ "Pk); by Lemma 5 the value of ()ik is 
independent of the choice of J and K. Then define Un 
by setting (for j '# k) U B( "Pi @ "Pk) = ()jk' This 
specifies U B on a basis of H' @B H'; it is then deter­
mined by linearity and continuity on the whole of 
H'@BH'. 

To complete the proof of Theorem 5.6, it only 
remains to show 

Lemma 6: For any orthogonal pair {f, K} of 
subspaces compatible with B, UJK and UB agree up 
to a phase factor. 

Proof' By Theorem 4.2 it is sufficient to consider 
the case when the pair {J, K} is maximal; i.e., when K 
is the orthogonal complement of J in L. Now, when­
ever "Pi E J and "Pic E K, we have 

UJK("Pi @"Pk) = fjkU1i"Pi ® "Pk) 

for some phase factor tjk • We must show that tjk 

is independent of j and k. 
Now if J:::) Ll and K:::) L 2 , {J, K} is of type 2; 

and if J:::) L2 and K:::) L 1 , {J, K} is of type 3; in both 
cases the result follows at once from the definition 
of U B' It is therefore only necessary to consider the 
situation when Ll EEl L2 C J. (The case when Ll ED 
L2 C K is similar.) This divides into two cases. 

Case I: dimJ ~ 3. Let J = Ll ED L2 ED J where J is 
orthogonal to L1 ED L2 • Let j, k, k' be such that 
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"Pi E j, "Pk E K, "Pk' E K. Then {LI EB L;, Lk EB Lk,} is a 
pair of type 2 so that U B agrees with U L1IJJLj,Lk$Lk' 

which (by Theorem 4,2) agrees up to a phase factor 
with U J K' Since "PI ® "Pk and "Pi ® "Pk' both lie in the 
domains of all these mappings, tik = t)k' . In the same 
way, by using the pair {Lz EB L j , Lk EB Lk, EB L I} 
(which is of type 3) we deduce that tZk = Ijk'. It 
follows that all the phase factors are equal. 

Case 2: J = Ll EEl Lz . Here dim K ~ 3. Let "Pk' 
"Pk" "Pk" be any 3 basis elements belonging to K. Then, 
by Theorem 4.2, U LIIJJL2,K agrees up to a phase factor 
with ULl33L20JLk",Lk9Le and by Case I the latter 
agrees with UB . But both "PI ® "Pk and "P2 ® "Pk' lie in 
the domains of all these mappings so that tlk = 12k" 
which (k and k' being arbitrary) establishes the 
equality of all the phase factors. 

This completes the proof of Lemma 6 and with it of 
Theorem 5.6. 

We can now separate the Bose and Fermi cases. 
Under the hypotheses of Theorem 5.6, let E: H' (51 

H' -+ H' ® H' be the "exchange operator" defined by 
E("P ® q;) = rp @ "P for all "P and q; in H'. Let VjJ = 
U nE. Owing to the commutative property of the 
operator 0, Vu has the same property as Un: whenever 
{"P, q;} is compatible with B, 

ray V1i"P ® rp) = ray UlJ(q; ® "P) = q> 0 ~ = ~ 0 q>. 

By Theorem 5.6 it follows that VB = ABUB , where 
AB is a phase factor. Since A~UB = AlJUlJE = UIJP = 
UB' AH = ±l. We now prove that AH is independent 
of B. 

Theorem 5.7: Let H' be a simple system of dimen­
sion ~ 5, B be an orthonormal set in H' of at least 3 
elements, and Au be defined (as above) by the equation 

UJi"P ® q;) = AjJUB(rp 0 "P), 

valid for every orthogonal pair {"P, q;} of vectors in H' 
compatible with B. (UlJ is defined in Theorem 5.6.) 
Then one of the following cases applies. 

Bose case: AU = 1 for every such orthonormal set B. 
Fermi case: AB = -I for every such orthonormal 

set B. 

Proof: We first note two lemmas. 

Lemma 1: If B' c B, then AB , = Au' 

For we can then take for UB' a suitable restriction of 
Un. Lemma 1 gives at once. 

Lemma 2: If B n 8 ' has at least 3 elements. then 

AB' = All' 

In proving the theorem it suffices, by Lemma 1, to 
consider only orthonormal sets consisting of 3 ele­
ments. Let Band B' be two such sets. We shall show 
that An = AB ,. To do this we proceed from B to an 
orthonormal set containing B' through a sequence of 
steps, each of which involves the addition or removal 
of a single unit vector. We start with S = Band 
follow these instructions: 

(i) If S has 3 elements or has 4 elements and is an 
orthonormal set, add to S an element of B' not already 
in S. 

(ii) If S has 4 elements and is not an orthonormal 
set, add to S a unit vector orthogonal to each vector 
in S. 

(iii) If S has 5 elements, delete from S any element 
which is not orthogonal to every member of the set 
B' nS. 

This process terminates eventually, with S::::> B' 
and the consequent impossibility of carrying out 
instruction (i). Writing down the finite sequence 
Sl' ... ,Sn obtained in this way and deleting from 
each Sr one element (or sometimes none), we get a 
sequence of orthonormal sets B = B1 , •.• , Bn ::::> B', 
to which we can apply Lemmas 1 and 2 and so deduce 
AB = AB ,· 

In virtue of Theorem 5.7, every simple system of 
dimension ~ 5 is either a Fermi system or a Bose 
system in the following sense. 

Definition 5.8: A Fermi (Bose) system is a simple 
system of dimension ~ 5 for which the Fermi (Bose) 
case of Theorem 5.7 applies. 

6. STRUCTURE OF FERMI AND 
BOSE SYSTEMS 

In this section we determine, for a simple system H' 
of dimension ~ 5, the relation between H' and the 
Hilbert space H" of 2-particle states. Our conclusion 
(Theorems 6.5 and 6.6) is that there is a natural 
isomorphism between H" and (in the Fermi and Bose 
cases, respectively) the antisymmetric or symmetric 
tensor product of H' with itself. We define this iso­
morphism by means of the mappings UB correspond­
ing to various bases B. First, however, we must show 
that these mappings agree with each other up to a 
phase factor. The next theorem is an important step 
in this direction. 

Throughout the following, H' denotes the Hilbert 
space of a simple system of dimension ~ 5. 

Theorem 6.1: Let Band B' be bases of H' with at 
least 2 elements in common, and let B" = B n B'. 
Let UB and UB , be defined as in Theorem 5.6, with 
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the phase of VB' so adjusted that VB'(~ ® rJ) = 
VB(~ ® rJ) for some orthogonal pair of vectors a, rJ) 
compatible with B". Then, if {"I', cp} and {1p', cp'} are 
any orthogonal pairs of vectors compatible with B 
and B', respectively, 

(UB(1p ® cp), VB,(1p' ® cp'» 

= ("I', 1p')(cp, cp') + A(1p, cp')(cp, "1"), (1) 

where A = ± 1 according as H' is a Bose or a Fermi 
system. 

Before proving the theorem we establish two 
corollaries. 

Corollary 6.2: If B, B', VB' VB' satisfy the condi­
tions stated in the theorem, and if {"I', cp} is any 
orthogonal pair of vectors compatible with both B 
and B', then 

V B( "I' 0 cp) = V R'( "I' 0 cp). 

Proof' Assume "I' and cp are unit vectors. Then so 
are VB ("I' 0 q;) and Vl:J'(1p 0 cp), and by the theorem 
their scalar product is 1. 

Corollary 6.3: If {"I', cp} and {ip', cp'} are any two 
pairs of orthogonal unit vectors in H', then 

Proof: Since dim H' ~ 5, we can choose ortho­
normal vectors "1'1' "1'2, "1'3 orthogonal to "I' and "1". 
Let B be a basis containing the set "1'1' "1'2, "1'3' "I' and 
let B' be a basis containing the set "1'1' "1'2' "1'3' "1". Then 
{"I', cp} is compatible with Band {1p', cp'} is compatible 
with B'. Thus ~ 0 <p = ray VB ("I' 0 cp) and~' 0 <p' = 
ray VB' ("I" 0 cp'), and the result follows from the 
theorem. 

Proof of Theorem 6.1: The proof is by a series of 
lemmas. Using the definition and linearity of VB we 
easily obtain. 

Lemma I: The theorem holds in the case when 
B=B'. 

Now let K be the linear space whose basis is B" and 
let J be its orthogonal complement in H'. 

Lemma 2: The theorem holds if "1', "1", cp, cp' are all 
in K. 

Proof' Let , be any unit vector in J and let E = 
g} U B". Then VB I H' 0 B H' = VB' I H' 0ii H' since 
these mappings, by Theorem 5.6, can differ only by a 
phase factor and they agree at ~ 0 rJ. The result now 
follows from Lemma 1. 

Lemma 3: The theorem holds whenever "I' and "1" 
belong to J and cp and cp' belong to K. Moreover, in 
this case VB ("I' ® cp) = VB,(1p 0 cp). 

Proof' Putting ,= "1', the argument used in the 
proof of Lemma 2 shows that VB(1p 0 cp) = VB,(1p 0 
cp). The result now follows from Lemma 1. 

From Axiom 1.1 and Lemma 3 we easily deduce 

Lemma 4: The theorem holds whenever, of the 
four vectors "1', "1", cp, cp', two belong to J, and two 
belong to K. 

Lemma 5: The theorem holds whenever "1', "1", cp, cp' 
all belong to J. 

Proof: Let ("I', "1") = cx., {"I', cp') = p, (cp, "1") = Y, 
(cp, cp') = d. Consider the four vectors "I' +~, cp, 
"1" - cx.~ + PrJ, cp' - P~ - ocrJ. The first is orthogonal 
to the other three and the last two are orthogonal. Also 
the pair {"I' + ~, cp} is compatible with the basis Band 
the pair {"I" - cx.~ + PrJ, cp' - P~ - ocrJ}iscompatible 
with E, where we denote by E the basis obtained by 
replacing in B' the vectors ~, rJ by unit vectors ~', rJ' 
parallel to cx.~ -. PrJ and P~ + ocrJ, respectively. 
Choose VB so that V B(1p' 0 cp') = VB ,(1p' 0 cp'). We 
then have, by Axiom 1.1, 

0= (VB [(1p + ~) 0 cp], UB[(1p' - cx.~ + PrJ) 

o (cp' - n - ocrJ») 

= (UB(1p 0 cp + ~ 0 cp),VB(cp' 0 cp' - cx.~ 0 cp' 

+ PrJ 0 cp' - P1p' ® ~ - oc"I" 0 rJ 

+ [cx.~ - PrJ] 0 [P~ + ocrJ]))· 

On expanding this product and using Axiom 1.1 
again, all but three of the 12 terms vanish. We obtain 

(U B( "I' 0 cp), V B'( "1" 0 cp'» 

= cx.(U B(~ 0 cp), V B'(~ 0 cp'» 

+ PAW B(~ 0 cp), V B'(~ 0 "1"» 
= cx.d + PAY, 

where Lemma 4 has been used on several occasions. 
With the aid of Lemmas 2, 4, and 5, the theorem 

can now be proved. First note that both sides of (1) 
are linear in "1" and cp' and antilinear in "I' and cpo It 
suffices therefore to consider only the 16 cases in 
which each of these four vectors lies in one or other 
of the spaces J and K. But in each of these cases 
either both sides of (1) vanish by Axiom 1.1 or the 
theorem holds by one of the lemmas. This completes 
the proof of Theorem 6.1. 

Before studying the relation between H' and H" 
for Fermi and Bose systems, we introduce some 
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notation. Let B = {"Pi: i E J} be an orthonormal basis 
in I-particle space H'. A basis for H' 0 H' is given by 
{"Pi 0 "P;:i E J,j E J}. The antisymmetric tensor product 
H' 0_ H' is the (closed) subspace of H' 0 H' spanned 

by the orthonormal set {("Pi x "P; - "P; 0 "Pi)/~2: 
i E J, j E J, i ¥= j} and the symmetric tensor product 
H' 0+ H' is that spanned by the orthonormal set 

{"Pi 0 "Pi: i E J} U {("Pi 0 "Pi 

+ "Pi 0 "Pi)/J2: i E J,j E J, i ¥= j}. 

It is well known that these subspaces are independent 
of the basis B and are mutually orthogonal and that 

H' 0 H' = H' 0_ H' CD H' 0+ H'. 

We write also 

H' 0 B+H' = H'0R H' n H'0+ H'. 

We denote by E_ and E+ the projections onto H' 0_ H' 
and H' 0-t- H', respectively. 

Theorem 6.4: (i) For a Fermi system VBE_ = VlJ 
and VBE+ = O. Moreover, if Vu_ = (VB I H' @_ H')/ 

/2, then VB - is an isometry of H' 0_ H' into H". 
(ii) For a Bose system VlJE+ = VB and VBE_ = O. 

Moreover, if VB+ = (VB I H' 0 B+ H')/~2, then VB-t­
is an isometry of H' @11+ H' into H". 

Proof' (i) Since VB- is linear, it suffices to show that 

the orthonormal basis {("Pi @ "Pi - "Pi 0 "Pi)//3.: i ¥= j} 
for H' @_ H' is carried by V B- into an orthonormal 
set in H" .12 But this fact is easily verified using the 
definition of V B- and Theorem 6.1. 

(ii) The proof is similar. 

In the rest of this section we shall deal separately 
with the Fermi and Bose cases, the latter being 
considerably more complicated. In the Fermi (Bose) 
case our aim is to amalgamate the isometries V lJ- (V B+) 
into a single isometry V_ (V+) from H' 0_ H' onto 
H" (H' 0+ H' onto H"). We treat first the Fermi case. 

Theorem 6.5: For any Fermi system H', there 
exists a linear isometry V_, unique up to a phase 
factor, of H' @_ H' onto H" such that, for any 
orthogonal unit vectors "P, cp in H', 

ray V_[(tp 0 cp - cp 0 tp)/J"2] = t/J 0 cpo 

Proof' We first establish uniqueness. Assume V_ 
and V_ both have the stated property. Define a 
bounded linear operator V's:H' 0 u H' ~ H by 
setting, whenever i ¥= j, 

V~ltpi 0 tp;) = V_(tpi 0 "P; - "P; 0 "Pi)/~2, 

and define V's similarly. Then both V~ and VB 
satisfy the condition required of VB in Theorem 5.6. 
Consequently, they can differ only by a phase factor. 

However, V_ = V's I H' @_ H')/J"2 and similarly for 
V_. So V_ and V_ differ only by a phase factor. 

We now establish the existence of V_. Choose 
arbitrarily a basis B for H' and let VR and VB _ be 
defined as in Theorems 5.6 and 6.4. Put V_ = VR_. 

We must show that for any orthogonal unit vectors 
"P, cp in H', 

ray V_[(tp @ cp - cp 0 tp)/~2] =t/J 0 cp; (2) 

i.e., that every pair of orthogonal unit vectors in H' 
belongs to 'Y, where'Y denotes the set of all orthogonal 
pairs of unit vectors {"P, cp} in H' such that (2) holds. 

By Theorems 5.6 and 6.4 we have at once 

Lemma 1: Any pair of orthogonal unit vectors 
compatible with B belongs to 'Y. 

Now let tp = Ii a;tp; and cp = I; b;tp; be any pair 
of orthogonal unit vectors in H'. We shall show that 
{tp, <p} E 'Y. 

Choose on the ray t/J 0 cp a unit vector ~i";; CJ)ij + {j 
where Bii = -Bj; = VB ("Pi 0 "P;). We may without 
loss of generality assume Cii = -cji and {j 1.. Bii 
for all i, j with i ¥= j. By Corollary 6.4, for any 
orthogonal unit vectors "P', cp' in H' 

(t/J' 0 cp', t/J 0 cp) 

= I("P', tp)(cp', cp) - (tp', <p)(cp', tp)l. (3) 

Putting tp' = tpi and cp' = tp;, we obtain 

ICi! - ciil = la;b, - aib;l. 
Thus 

2ci! = tij(aib; - ajb;), 

where til = Iii is a number of modulus 1 defined for 
each i, j with i =;f:. j and Cii =;f:. O. A short calculation 
shows that Ii,.;i CilOii is a unit vector, so that {j = O. 

yve next show that Iii is independent of i and j. 
First, 

Lemma 2: If i,j, k are distinct, Cii =;f:. 0, and Cik =;f:. 0, 
then ti; = tik . 

Proof' In (3) put tp' = "Pi and cp' = lX"Pi + fJ"Pk' 
where I IXI2 + IfJI2 = 1, IX =;f:. 0, fJ =;f:. O. We obtain 

I ~Cii + PCikl = I ~Cii/tii + PCik/tikl 
so that 

11 + PCik/~Ciil = I I + PCiktij/~Cijtikl· 
Now IX and fJ may be chosen so that PCik/~Cii is real. 

It follows that tii/lik = 1. 
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Lemma 3: If e,j ¥: 0 and emn ¥: 0, then to = tmn · 

Proof: Assume e,jemn ¥: O. The identity 

(aib j - a;bi)(ambn - anbm) + (aibm - ambi) 

x (anb; - ajb,,) + (aibn - anbi)(ajbm - amb;) = 0 

then shows that either eiJY! ¥: 0 or ein ¥: O. Assume 
Cim ~ 0; then by two applications of Lemma 2 we 
have Ii; = lim = Imi = tmn • 

From Lemma 3 it follows that all the phase factors 
tij are equal so that, by means of a phase change in 0, 
we may obtain 

o = 1 (aibj - a jbi)(}iJ/2. 
i:f:.j 

But this means 0 = V_("P @ cp - cp @ "P)~2, which 
shows that the pair {"P, cp} satisfies (2), completing the 
proof of the theorem. 

The proof of the corresponding theorem for the 
Bose case is rather more complicated: 

Theorem 6.6: For any Bose system there exists a 
linear isometry V +, unique up to a phase factor, of 
H' @+ H' onto H" such that, for any orthogonal 
unit vectors "P, cp in H', 

ray V+[("P @ cp + cp @ "P)/J"2] = ~ 0 cpo 

Proof" We first establish uniqueness. Let V+ be an 
arbitrary isometry satisfying the condition of the 
theorem. Define a linear mapping V:H' @ H' ---->- H" 
by setting 

V("P @ cp) = V+[("P @ cp + cp @ "P)/~2]. 
Let B = {"Pi: i E J} be a fixed basis in H' and let 
VB:H' @B H' ->- H" be a fixed mapping satisfying the 
condition of Theorem 5.6. Since V I H' @B H' also 
satisfies this condition, it differs from VB only by a 
phase factor; thus by altering V+ by a phase factor 
we can obtain V I H' @B H' = VB' We assume this 
done. We then have, whenever i ¥: j, 

V+[("Pi @ "Pj + "Pj @ "Pi)/J"2] = VB("Pi @ "Pj). 

We have to show that V+ is now uniquely fixed. 
This will be accomplished if we can show that the 
value of V+("Pi @ "Pi) is independent of the original 
choice of V + . 

To do this we introduce some more orthonormal 
bases in H'. For each i, j with i ~ j, let B i ; be the 
basis obtained from B by replacing "Pi and "P; by 
("Pi + "P;)f~2 and ("Pi - "Pj)fJ"i, and let B;j be that 
obtained from B by replacing "Pi and "P; by ("Pi + 
i"Pj)/~2 and ("Pi - i"P;)/~2. Let the phase of VBII and 
VB'a be chosen so that these operators agree with VB' 

Then VB and VB,- are uniquely determined. More­
over, U (IH , @B i1' = VB ' since these can differ 
only by a phase" factor and both agree with VB at, 
for instance, the point "Pm @ "Pn, where i, j, m, n 
are all distinct. Similarly, V I H' @B'ii H' = VB"J' 
Now 

2y2 V+("Pi @ "Pi) = 2V("Pi @ "Pi) 

= V[("Pi + "P;) @ ("Pi - "P;) 

+ ("Pi + i"Pi) @ ("Pi - i"Pi)] 

= VB [("Pi + "Pi) @ ("Pi - "Pi)] 
u 

+ VB'[("Pi + i"Pj) @ ("Pi - i"Pj)] 
.1 

which is independent of the choice of V +. This 
completes the proof of the uniqueness up to a phase 
factor of V + . 

To establish the existence of a mapping V+ with 
the desired property, we define it as follows. First 
choose a basis B in H' and a mapping VB:H' @B 
H' ---->- H"; then define bases Bij and B;j and fix the 
phases of VB_ and VB' all as above. Now, for i ¥: j, 
let I) " 

()o = U B("Pi @ "PJ 
and let 

2y2 ()w = UB)("Pi + "Pj) @ ("Pi - "P;)] 

+ UB,;,l("P; + i"Pj) @ ("Pi - i"Pj)]' 

Lemma I: ()w is a unit vector which is independent 
ofj. 

Proof" Let i, j, k be indices with i ¥: j and i ¥: k. 
Since dim H' ~ 5, any pair of the bases B, Bo , B;;, 
Bik' B:k has at least 2 elements in common. We can 
therefore apply Theorem 6.1 in determining «()w, ()iik)' 
A short calculation gives (Oiij, 0iik) = I. 

Let us write Ow = 0;;. In the same way we can 
prove 

Lemma 2: For any indices i, j, k, 

(Oii' 0;;) = bi;, 

(Oii' Ojk) = O. 

These equations show that if we define a linear 
mapping U+: H' @+ H' ---->- H" by 

V+("Pi @ "Pj + "Pi @ "Pi)/y2 = Oil for i ¥: j, 

V+("Pi @"Pi) = Oii' 

then V+ is an isometry. 
We shall show that V+ has the required property. 

Let'Y denote the set of all pairs {"P, cp} of orthogonal 
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unit vectors in H' for which 

ray U+("P ® f(! + f(! ® "P)/.J2 =~ 0 cpo 

Lemma 3: 'Y is a closed set in the set product 
H' X H' with the product topology. 

Proof' Ray U+("P ® f(! + f(! ® "P)/.J2 is a continuous 
function of the pair {"P, f(!} and so, by Corollary 6.3, 
is~ocp. 

It is convenient to define a linear mapping V: H' ® 
H' ->- H" by 

V("P ® f(!) = U+("P ® f(! + f(! ® "P)/Ji 

Lemma 4: Let i, j be distinct indices. If {"P, f(!} is a 
pair of orthogonal unit vectors compatible with any 
of the bases B, Bu , B;i' then {"P, f(!} E 'Y. 

Proof' Let i,j, m, 11 be distinct elements of J. Then 

(a) V("Pm ® "Pn) = Omn = UB("Pm ® "Pn), 

(b) V[("Pi ± "P) ® "Pm] = 0im ± 0im 

and similarly 

= Un[("Pi ± "P) ® "Pm] 

= Un)("Pi ± "Pj) ® "Pm], 

(c) V[("Pi ± i"PJ ® "Pm] = VU'J("Pi ± i"Pj) ® "Pm]· 

Moreover, since V("Pi ® "Pi) = JZO'i' 

(d) V[("Pj + "P) ® ("Pi - "P)] = J2 0i; - V20jj 

= J2(Oiij - Om) 

= VnJ("Pi + "Pj) 

® ("Pi - "Pi)]' 
and similarly 

(e) U[("Pi + i"Pj) ® ("Pi + ivy)] 

= VB')("Pi + i"Pj) ® ("Pi - i"Pj)]' 

By (a) V agrees with VB on the elements of a basis 
of the domain of Vu and consequently everywhere in 
that domain. But, whenever {"P, f(!} is compatible with 
B, ray Vu("P ® f(!) = ~ 0 cp so that {"P, f(!} E 'Y. 

In the same way it follows from (b), (c), (d), and (e) 
that {"P, f(!} E 'Y whenever {"P, f(!} is compatible with 
Bij or with B;j for any distinct indices i, j. This com­
pletes the proof of Lemma 4. 

Lemma 5: Let i, j be distinct indices and let "P = 
ai"Pi + aj"Pj and f(! = bi"Pi + bj"Pj be orthogonal unit 
vectors. Then {"P, f(!} E 'Y. 

Proof' In view of the definition of Uf-' we have to 
show that 

J2 a,biOii + (aib j + aA)f)ij + J2 ajbjOjj = 0, 

say, is a vector on the ray ~ 0 cpo 

Let B" be the base obtained from B by replacing 
"Pi and "Pj by "P and f(!, and choose the phase of VB" so 
that U B' agrees with VJ]. We shall show that Vw("P ® 
f(!) = 0. Let 

Vw("P ® f(!) = CiiOii + COOij + cJjjj + {J 

where {j is orthogonal to Oii' OiJ' and Ojj' Since 
dim H' ~ 5, each of the sets B n B", BiJ n B", 
and B;i n B" has at least three elements. Hence, by 
Theorem 6.1, 

(Uu'{"P ® f(!), VU("Pl ® "Pj» = ("P, "P;)(f(!, "Pj) 

i.e., 
+ ("P, "Pj)(f(!, 1fJi)' 

Similarly, by using in turn UU[("Pi + "P) @ 

("Pi - "P)] and VW)("Pi + i"Pj) (8) ("Pi ..:..' i"Pj)] instead 
of VU("Pi ® "Pj), we obtain 

Cii - Cjj = J2 (a,bi - ajbj) 
and 

Thus Vw("P ® f(!) = 0 + {J. Since both 0 and 
o + e are unit vectors, e = o. 

Lemma 6: Let "P = Ii ai"Pi and f(! = Li bi"Pi be 
any orthogonal unit vectors in H' such that the 
numbers aib, are all different and nonzero. Then 
{"P, f(!} E 'Y. 

Proof' Let a unit vector on the ray ~ 0 cp be 

o = I CuO;; + L CUOi } + e, 
i i*i 

where Co = cJi and e is orthogonal to the vectors 0i;, 
for all i and j. We shall prove the lemma by showing 
that, with a suitable choice of phase, 0 = V + ("P ® 

f(! + f(! @ "P)//i. 
For any indices 111, 11 with 111 ;#: 11, let 

"P'="Pm+€"Pn, 

f(!' = i"Pm -"Pn' 

where € is an arbitrary complex number. By Lemmas 
2 and 5, 

0' = V+("P' ® f(!' + f(!' ® "P')/)2 
= J"2 (iO mm - €Onn) + (/€/2 - l)Omn 

is a vector of length I + 1€12 on~' 0 cp'. Hence, by 
Corollary 6.3, 

1(0',0)1 = 1 ("P', "P)(f(!', f(!) + (V/, f(!)(f(!', "P)I, 
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whence 

I J2(iCmm - ec",,) + 2(le1 2 
- l)cm,,1 

= 12(iambm - eanb,,) + (lel 2 
- l)(ambn + anbm)l· 

(4) 

From this equation (which holds for every E and 
every pair m, n of distinct indices), we deduce the 
value of the constants Cij • First put lei = 1 and let 
/-t = i/e, an arbitrary complex number of modulus 
unity. We have, for every such /-t, 

l/-tcmm - cn,,1 = J21/-tambm - anbnl. (5) 

Allowing /-t to vary and taking the maximum of 
each side of (5) gives 

Icm",1 + ICnnl = IJ2 ambml + IJ2 anbnl· 

Let p be distinct from m and n. Writing the previous 
equation also for the pairs m, p and n, p, we obtain 

Icmml = J2 lambml so that 

Cmm = tmJ2 ambm, 

where tm is a phase factor which may depend on m. 
Substituting in (5) and observing that both sides of 
(5) must attain their maximum values for the same 
single value of /-t (since 0 ~ Cmm ~ Cn" ~ 0), we 
obtain 1m = tn' Thus all these phase factors are 
equal. Let us assume that the phase of f) is so chosen 

that for every index i, Cii = J2 aibi . 

Now put E = O. Then (4) gives 

2cmn = tmn(a",bn + anbm), 

where tmn is a phase factor. We shall show that, for 
every distinct pair of indices m, n, tmn = 1. To do this 

let e = J2/-t, where /-t is an arbitrary phase factor. 
Equaton (4) then yields 

I(.ucmm - /-tc nn) + Cmn 

= I(.ucmm - /-tc nn) + imncmnl. (6) 

Now, as /-t varies, the point flc mm - /-te nn describes 
a (nondegenerate) ellipse in the complex plane. By 
(6) the points -Cmn and -imncmn are equidistant 
from every point on this eIIipse. They must therefore 
coincide. Unless Cmn = 0 (in which case there is 
nothing to prove), this means tmn = 1. 

Substituting the values thus found for the constants 
Cii and e;i' we have 

f) = 2: J2 aibif)ii + 2: [(a;b j + a jbi)/J2]fJij + (j; 
i i* j 

i.e., 

f) = U+(1p @ f{! + f{! @ 1p)(J'2 + 0. 

Now f) is a unit vector and (j is orthogonal to the 

unit vector U+(1p @ f{! + f{! @ 1p)/J2; so {j = O. This 
completes the proof of Lemma 6. 

From Lemmas 6 and 3 it follows that every orthog­
onal pair of unit vectors in H' belongs to 'Y, which 
proves Theorem 6.6. 
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Thi~ is the first ?f a ~eries of pap~rs dealing with propagation of electromagnetic waves through a 
me~allIc sla? of fimte t.hlckness. In !hls firs~ pape~, w~ present a method for solving the integrodiffer­
entIal equatIOn governIng the electrIc field In the InterIor of the metal when the electrons in the interior 
of the metal suffer diffuse ~eflection at ea~h s~rface. The method is potentially of use in a wide class of 
proble~s, namely, ~he fimte-sla~ generalIzatIOn of all those semi-infinite-medium problems which are 
conven~lOnally studIed by the Wlener-Hopf t~chniqu~. The solution given here is an iterative one with 
successIve terms convergIng as e-Ell , where L IS the thIckness of the slab and I is the range of the kernel 
of the integral term in the equation. 

1. INTRODUCTION 

Electromagnetic waves propagating through metals, 
semimetals, and semiconductors have provided an 
exceptionally useful tool for the study of solid state 
plasmas,l of electron-electron interactions,2 and of 
the various excitations which the solid can support, 
such as phonons3 and magnons.4 In most cases, the 
analysis of an experiment or the predictions of a 
theory are carried out using the infinite-medium 
dispersion relationship. This is as it should be, for 
the next stage of complexity, solving the boundary­
value problem, is often orders of magnitude more 
complex and often provides answers which are really 
no more informative than those the dispersion rela­
tion could have provided. Nonetheless, there are 
cases, such as the anomalous skin effect,5 field normal 
cyclotron resonance6 and size effect,7 and helicon prop­
agation near doppler-shifted cyclotron resonance,8 

where the presence of the boundaries plays a critical 
role in the phenomena of interest. In the first three of 
these, there is no infinite-medium dispersion relation­
ship to speak of, while in the last, we are in a regime 
where the dispersion relationship is losing validity. 

Some of the boundary-value problems associated 
with the above phenomena have already been solved. 
In order of increasing complexity, solutions have been 
given for the fields in a semi-infinite medium, as­
suming specular reflection of the electrons from the 

1 Proceedillgs a/the Symposium all Plasma Effects ill Solids, Paris, 
1964 (Dunod Cie., Paris, 1965) and references cited therein. 

2 W. M. Walsh and P. M. Platzman, Phys. Rev. Letters 9, 514 
(1967); S. Shultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967). 

3 C. C. Grimes and S. J. Buchsbaum, Phys. Rev. Letters 12, 357 
(1964); V. G. Skobov and E. A. Kaner, Soviet Phys. JETP 19,189 
(1964). 

4 F. A. Stern and E. R. Callen, Phys. Rev. 131, 512 (1963); C. C. 
Grimes, Bull. Am. Phys. Soc. 10,471 (1965). 

S G. E. H. Reuterand E. H. Sondheimer, Proc. Roy. Soc. (London) 
A195, 336 (1948). 

6 R. G. Chambers, Phil. Mag. 1,459 (1956). 
7 M. Ya Azbel and E. A. Kaner, Soviet Phys.-JETP 5,730 (1957). 
8 P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962). 

boundary,5.7-9 for a finite slab assuming specular 
reflectionlO ; and for the semi-infinite medium, assum­
ing diffuse reflection of the electrons from the 
boundary.5,O,lIil The purpose of the present effort is 
to determine the field in a finite slab, assuming 
diffuse reflection of the electrons, and to compare 
the solution with that for the finite slab, assuming 
specular reflection of the electrons. 

This first paper deals exclusively with how the 
fields are calculated and not at all with the results of 
that calculation, which is the subject of the second 
and third papers. lib In this paper, we present a two­
sided Wiener-Hopf method for solving the integro­
differential equation which governs the electric field in 
the interior of the metal. The equation is of the form 

d
2 iL 

-2 e(z) + Ae(z) = K(lz - z'l)e(z') dz', 
dz 0 

o ~ z ~ L, 

where e(z) , the unknown electric field, satisfies 
boundary conditions at z = 0 and at z = L, A is a 
given constant, L is the width of the slab, and K is a 
given kernel. In the electromagnetic-wave problem, 
A = UJ2jc2 and K = -iw,uoO'(lz - z'l), where 0' is the 
nonlocal conductivity kernel, but the method pre­
sented here makes use only of one special property 
of K, namely that IKI decays exponentially at infinity 
like exp - Izl/I, where 1 is some positive length. (I is 
the electron mean free path in the electromagnetic­
wave problem.) Thus, the method presented here is a 
general one and is potentially of use in a wide variety 
of problems, namely, the finite slab generalizations 
of all those semi-infinite-medium problems which are 

9 J. C. McGroddy, J. L. Stanford, and E. A. Stern, Phys. Rev. 
141,437 (1966). 

10 P. M. Platzman and S. J. Buchsbaum, Phys. Rev. 132,2 (1963). 
11a R. B. Dingle, Physica 9, 311 (1953). 
ub G. A. Baraff, Phys. Rev. 167, 625 (1968); the third will also 

appear in Phys. Rev. 
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conventionally studied by the Wiener-Hopf tech­
nique,12 The reader interested solely in the physics is 
invited to read through the remainder of this section 
and the next, and then to await publication of the 
second paper: The physical content of this first paper 
is purposely restricted to shorten the presentation of 
the method. 

The method presented here is a Wiener-Hopf 
method in that the basic unknown, the Fourier 
transform of the field, can be found only after certain 
analytic properties of the transform are utilized; 
without exploiting these analytic properties, there is 
not sufficient information to determine the transform. 
The essence of the present approach is that the field 
in the slab can be expressed as a sum of two functions, 
one decaying to the right and one decaying to the 
left. These functions must be defined outside the slab 
in such a way that (even though they do not represent 
the field exterior to the slab) their transforms have 
singularities in the finite k plane. Without this, there 
would be no useful analytic properties to exploit. In 
particular, the functions cannot vanish identically 
outside the slab. We therefore devise an extension 
of the original equation to determine these functions 
over all space. Having done this, we take the trans­
forms of the extended equation and find that the two 
transforms will have the correct analytic properties 
only if an auxiliary condition is satisfied. This auxil­
iary condition is identical to the standard inhomo­
geneous Hilbert problem on an arc, and the machinery 
for satisfying it exists-the book by Muskhelishvili13 

is the source of our knowledge here. Applying the 
Muskhelishvili techniques (which we describe without 
rigor) leads to an iterative solution. The zeroth term 
contains the standard Wiener-Hopf solution and also 
contains the Fabry-Perot fringes arising from multiple 
internal reflection of the wave. Higher iterates con­
verge at least like e Lll . The higher iterates describe 
multiple reflection of the single-particle excitations, 
and so the convergence parameter for the series is 
really the amplitude of the single-particle excitations 
at the far side of the slab. This can be considerably 
smaller than e-Lll , and the zeroth iterate can provide 
an accurate solution. The discussion of these matters 
is, however, part of the physics which will be found 
in the second and third papers.11IJ 

2. THE INTEGRODIFFERENTIAL EQUATION 

For the purposes of this study of electromagnetic 
waves propagating along a magnetic field normal to 

12 E. Hopf, Mathematical Problems of Radiative Equilibrium 
(Cambridge University Press, New York, 1934). 

13 N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff 
Ltd., Groningen, The Netherlands, 1953). 

the faces of a metallic slab, it is sufficient to charac­
terize the metal as a uniform free electron gas im­
mersed in a uniform fixed background of neutralizing 
positive charge extending from z = 0 to z = L.14 
One can, with no loss of generality, take the electric 
currents and electromagnetic fields to be transverse, 
circularly polarized, and monochromatic with a time 
dependence e-iwt . As a result of the nearly random 
velocities of the electrons, the current j at plane z, 
time t, will be carried by electrons which are in­
fluenced by the electric field e at other planes z' at 
earlier times ('. The relation between the current and 
field is thus a nonlocal one: 

(L 
j±(z) =)0 (j±(z, z', w)e±(z') dz', Os z S L, 

h(z) = J ,,(z) ± iJ.(z) , (2.1) 

e±(z) = Ex(z) ± iE.(z). 

This relationship, used to eliminate the current from 
Maxwell's equation, leads in the usual way to an 
integrodifferential equation for the field: 

(~22 + k~)e±(Z) = -iW,uo!oLdZ'(j±(Z, z', w)e±(z'), 

(2.2a) 

k~ = W
2
/C

2
. (2.2b) 

In order to calculate the conductivity kernel (j±, 
we use the Boltzmann equation in the simplified 
collision-time approximation commonly used in trans­
port studies: 

(~ + Vz ~)f(Z, p, t) + q(e± + V x B)· Vpf ot oz 
== -(I - fO)/7, (2.3) 

where Io(P) is the uniform time-independent equilib­
rium distribution function. The equation is to be 
linearized by putting 

fez, p, t) = fo(p) + fb, p)e-iWt, 

B(z, t) = Bo + b(z)e-iwt
, 

and solved for II' 
The boundary conditions on I of interest here are 

those corresponding to diffuse scattering: An electron 
at the surface z = 0 traveling towards the interior of 
the metal must have just previously collided with that 
surface. Its distribution function must be Io, the 
distribution in the absence of fields, because there 
has not been sufficient time for the field to alter the 
motion of the electron. Similar considerations apply 

14 The range of validity of this model is delineated in Ref. 10. 



                                                                                                                                    

374 GENE BARAFF 

to the boundary conditions at z = L. Thus, the bound­
ary condition to be applied to (2.3) is 

f1(z = 0, p) = 0 for Vz > 0, 

f1(z = L, p) = 0 for Vz < o. (2.4) 

The method of solving (2.3) and calculating the con­
ductivity kernel may be inferred from a study of the 
Reuter-Sondheimer paper.5 The magnetic field Bo 
present in (2.3) causes no complication and the result 
for a free-electron model, after all the integrals are 
done, is exactly the Reuter-Sondheimer result with 
W replaced by W ± We' where We is the cyclotron 
frequency.lo 

The important feature of this result is that in spite 
of the boundaries at z = 0 and z ==:= L, the boundary 
condition (2.4) results in a conductivity tensor which 
depends on the two spatial arguments onZv through 
their difference. That is, in the metal, 

O'+(z, z', w) = O'+(lz _ ::'/,0), 0 ~ z ~ L (2.5) 
-- - 0 ~ z' ~ L, 

where the kernel on the right is the ordinary infinite­
medium conductivity tensor. Thus, the integrodiffer­
ential equation to be solved (with the polarization 
index ± and the argument (f) suppressed) is of the 
form 

(::2 + k~)e(Z) = -iw,u0LL dz'O'(lz - z'l)e(z'), 

o ~ z S L. (2.6a) 

The boundary condition is that the field be incident 
on the slab with unit amplitude from the left: 

(1 +~.!!.)e(Z)=2 at 
'ko dz 

z = 0, (2.6b) 

(1 - ~ ~ )e(z) = 0 at z = L. (2.6c) 
'ko dz 

At this point, we may note that the specular reflec­
tion boundary condition used by Platzman and 
Buchsbaum10 (electrons striking the boundaries suffer 
a reversal of the z component of velocity but no 
change in x or y component) does not lead to a dis­
placement kernel of the form (2.5). It leads instead 
to a form which can be reexpressed as (2.5), provided 
that: 

(a) The limits 0 and L of the integral are made 
infinite. 

(b) The field e(=) is made periodic with period 2L, 
and even. 

15 Ref. 5, Eq. (14). 

Proviso (b) demands the introduction of periodic 
current sheets. Proviso (a) then renders the problem 
amenable to straightforward solution by Fourier 
transforms which, because of proviso (b), means 
by Fourier cosine series. Platz man and Buchsbaum 
arrived correctly at these conclusions and were able 
to evaluate their series solution rather simply. In 
our case, the finite limits 0 and L are responsible 
for the complexity of the problem which does not 
yield directly to Fourier analysis. 

3. THE TWO-SIDED EXTENSION OF THE 
ORIGINAL EQUATION 

If the slab were infinitely thick, that is, if L were infi­
nite, then Eqs. (2.6) would be exactly the semi-infinite­
medium problem solved by Reuter and Sondheimer 
using the Wiener-Hopf technique. Recall that the 
starting point is the observation that the integral 
equation (2.6a) determines e(=) only for z > 0, so that 
there is complete freedom in the definition of 
e(z) for z < O. In the Wiener-Hopf method, the 
choice is made to define e(z) as zero for negative z. 
Having made that choice, the integral equation is 
no longer satisfied for:: < 0 because, although the 
left side of (2.6a) has been defined as zero, the right 
side does not vanish. Hence, the first step is to define 
a compensating function, call it h(::) , which, when 
added to the integral equation, results in an equation 
which is true for all =. The conventional choice would 
be 

h(z) = + iw,uo Loo dz' O'(lz - z'l)e(z'), z < 0, 

=0, z ~ 0, 

because this, added to the right side of (2.6a) (with 
L = 00), would extend the validity of (2.6a) to all z. 
Then, the Fourier transform of the augmented equation 

( d: + k~)e(Z) = -iw,uofoo dz'O'(lz - z'l)e(z') + h(z) 
dz -00 

can be taken and solved for the two transforms E(k) 
and H(k). The reason that one equation can be solved 
for two unknowns, E and H, is that by virtue of e(=) 
being defined as zero for :: < 0, all singularities of 
£(k) will be located in one half of the complex k 
plane, while all singularities of H(k), the transform of 
an h(z) defined as zero for:: > 0, will be located in 
the other half plane. This information about the 
analyticity of £ and H underlies the Wiener-Hopf 
method. 

Now, we should like to apply the same sort of 
ideas to (2.6a) with L finite. First we observe that, 
since (2.6) defines e(=) only for 0 ~ = ~ L, we might 
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define e(z) in some convenient way outside this range. 
If we were to do this, we might add to (2.6a) whatever 
is needed to make the equation valid for all z. Having 
done that, we could then take Fourier transforms 
and, hopefully, solve for the transforms, using such 
information about analyticity as we have available. 

The first impulse, by analogy with Wiener-Hopf, 
is to define e(z) as zero outside the range ° ~ z ~ L. 
This leads nowhere, for any function which is defined 
as zero for z < ° and z > L has a transform £(k) 
which is analytic everywhere in the complex k plane. 
Then there are no analytic properties to exploit. 

A second approach is motivated by the knowledge 
that the surface often produces boundary transients 
which die off with distance into the bulk; that is, 
that die off from the surface z = ° towards larger z 
and that die off from the surface z = L towards 
smaller z. Thus, the field e(z) can be expressed in the 
slab as a sum of two parts, one of which decays to 
the left and the other of which decays to the right. 
We denote the leftwards-growing function asf(z) and, 
purely for convenience in later manipulations, we 
denote the rightwards-growing function as geL - z). 

That is, in the region ° ~ z ~ L where e(z) is defined 
by (2.6), we write 

e(z) = I(z) + geL - z). (3.1) 

The choice of defining e(z) outside the slab is now 
the choice of defining I and g outside the slab. We 
want f and g to extend to infinity so that their trans­
forms will have singularities, and yet we want them 
to decay in the correct direction. This can be satisfied 
by demanding that 

f(z),....., e-llZ ; g(z),....., e-llZ, z ->- + 00, (3.2a) 

where fl, > 0. Then, we also want the singularities of 
F(k) and G(k), the courier transforms ofl and g, to 
be confined to one half the complex k plane. This can 
be done by choosing 

I(z) = 0, g(z) = 0, :: < 0. (3.2b) 

At this point we can substitute (3.1) into the integral 
equation (2.6a), to get 

[;~2 + k~ ] [fez) + geL - z)] 

+ iWfl,0SoL O"(lz - z'I)[f(z') + geL - z')] dz' = 0, 

° ~ z ~ L. (3.3) 

[There will be no need to use e(z) again; the program 
will be to determine I and g and, only at the end, to 
evaluate e(z)'from (3.1).] 

It is unlikely that (3.3) will be valid outside the 
range ° ~ z ~ L, so now, again by analogy with 
Wiener-Hopf, we add to (3.3) just what is needed to 
make it valid everywhere. In this case we write the 
compensating function as h(z) + i(L - z), which we 
add to the right side of (3.3) to obtain 

[ d22 + k~J [fez) + geL - z)] 
dz 

+ i(f)fl,olL O"(lz - z'I)[f(z') + geL - z')] dz' 

= h(z) + i(L - z). (3.4) 

The two functions must be chosen so that (3.4) is valid 
for all z, and also so that h(z) + i(L - z) will vanish 
in the range ° ~ z ~ L. This last is necessary in order 
that (3.3) should be a consequence of (3.4). One way 
of guaranteeing this vanishing is to demand that 

h(z) = 0, i(z) = 0, z Z 0. 

This still leaves considerable freedom in the choice 
of hand i separately for z < 0. Before making this 
choice, however, let us note that because I and g are 
defined to vanish at z < 0, the following two state­
ments are true: 

SoL O"(lz - z'l)f(z') dz' 

=f'" O"(lz - z'l)f(z') dz' - (ry) O"(lz - z'l)f(z') dz', 
-~ JL 

SoL O"(lz - z'/)g(L - z') dz' 

= L: O"(lz - z'l)g(L - z') dz' 

- foo O"(lz - z'l)g(L - z') dz'. 

This we insert into Eq. (3.4). A slight rearrangement 
of the terms yields 

( d22 + k~)f(z) + i(f)fl,Of
oo 

O"(z - z')f(z') dz' 
dz -~ 

- iwfl,o fro O"(Z - z')g(L - z') dz' - h(z) 

= - [ (::2 + k~) g( L - z) 

+ iWfl,0L: O"(z - z')g(L - z') dz' 

- iwfl,o too O"(z - z')f(z') dz' - i(L - z) J (3.5) 

We have at this stage far more unknowns than 
equations. In particular, h(z) and i(z) are not sepa­
rately defined. Hence, we can choose to satisfy Eq. 
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(3.5) by demanding that each side separately vanishes. 
This will provide an extra equation for determining 
the two functions I and g. In the equations resulting 
from the vanishing of the right side, we replace z by 
L - z. The equation resulting from the vanishing of 
the left side is left as it stands. The two equations, 
vanishing of the left side and of the right side, are 

( d22 + k~)f(Z) + iWflojoo a(Iz - z'l)f(z') dz' 
dz -00 

- iWflofoo a(Iz - z'l)g(L - z') dz' = h(z), (3.6a) 

( d22 + k~)g(z) + iWflojoo a(/z - z'/)g(z') dz' 
dz -00 

- iWflofoo a(Iz - z'I)f(L - z') dz' = i(z). (3.6b) 

It is clear from (3.6) that the demand that I and g 
vanish at negative z demands that h(z) and ;(z) , the 
compensating functions, should satisfy 

h(z) = -jwfl~fooa(,z - z'I)g(L - z') dz' 

+ iWflo1: a(Iz - z'/)f(z') dz', z < 0, (3.7a) 

i(z) = - iWflo foo a(lz - z'l)f(L - z') dz' 

+ iWflo1:a(,z - z'/)g(z') dz', z < 0. (3.7b) 

Recall also that we have defined 

h(z) = 0, i(z) = 0, z ~ 0. (3.7c) 

In addition to (3.6) we have to supply boundary 
conditions for I and g. Two boundary conditions have 
already been given-exponential decay at infinity. 
The other two may be obtained by substituting (3.1) 
into (2.6b, c) 

[ fez) - .l df
] + [g(Z) + J.. d

g
] = 0, (3.8a) 

iko dz z~L iko dz z~o 

[ fez) + ..L d
f

] + [g(z) - J.. d
g

] = 2. (3.8b) 
iko dz Z~O iko dz z~L 

In Eqs. (3.6) and (3.8), we have a pair of coupled 
integral equations and a pair of coupled boundary 
conditions which, for the two-sided slab, are the 
exact analogs of the single integral equation and 
boundary condition for the one-sided semi-infinite 
slab. 

Equations (3.6), (3.7), and (3.8) possess consider­
able symmetry with respect to interchange of I and g, 
and of hand i. Only the boundary condition (3:8) 

lacks this interchange symmetry. To take advantage 
of this, it is convenient to introduce symmetric and 
antisymmetric boundary conditions which give rise 
to functions/±(z), g±(z), etc. These replace/(z), g(z), 
etc., in (3.6) and (3.7), but instead of (3.8), they 
satisfy 

[ f±(Z) - .l. ~ f±(Z)] 
iko dZz~L 

+ [g±(Z) + ~ J:.. g±(Z)] = ± 1, (3.9a) 
'ko dz Z~O 

[ f±(Z) + ~ .E...f±(Z)] 
lko dz z~o 

+ [g±(Z) - ~.E... g(Z)] = 1. (3.9b) 
'ko dz z~L 

Then, if I±(z), etc., satisfy (3.6), (3.7), and (3.9), the 
functions 

fez) = F(z) + r(z), 

g(z) = g+(z) + g-(z) 

(3. lOa) 

(3.IOb) 

will satisfy (3.6), (3.7), and (3.8). Furthermore, on 
interchanging I± and g± in the equations, one finds 
that 

f±(z) = ±g±(z), 

h±(z) = ±i±(z). 

Inserting (3.11) into (3.6), (3.9) gives 

(3.11 a) 

(3.llb) 

( d22 + k~)f±(Z) + iWflojoo a(Iz - z'I)/±(z') dz' 
dz -00 

T iWflo foo a(Iz - z'l)f±(L - z') dz' = h±(z), 

(3.12a) 

(3.12b) 

This form is the most suitable starting point for 
the use of Fourier transforms we have been able to 
devise. The Fourier techniques to be used will make 
extensive use of the analytic properties of the trans­
forms. For this reason, the next essential task is to 
study the analytic properties of the transforms of the 
quantities in (3.12a). 

4. ANALYTIC PROPERTIES OF THE 
TRANSFORMS 

Consider first the transform of I(z). (We suppress 
superscripts ±.) 

F(k) == L:f(z)e-ikZdz. (4.1) 

The requirements of Eq. (3.2) guarantee analyticity 
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of F(k) for 1m k < f.l, where f.l is the positive rate of 
exponential decay. Secondly, like almost all other 
kernels arising in physical problems, the conductivity 
kernel has a range; call it I. That is, la(z)1 '"" e-Izlli 
as z --+ ± 00. Hence, its transform 

V(k) == -iwf.l0fa(z)e-ikZ dz (4.2) 

will be analytic in the strip -1/1 < 1m k < 1/1. 
Thirdly, the definition provided by (3.7) guarantees 
that H(k), the transform of h(z), will be analytic for 
-1/1 < 1m k < 00. Finally, the transform of the last 
term on the left of (3.12a) is analytic in the strip 
-1/1 < 1m k < 1/1. It turns out that f.l ~ 1/1, so that 
all transforms are analytic in the range -1/1 < 
1m k < f.l. Therefore, we can take the transform of 
Eq. (3.12a) for k in the strip -1/1 < 1m k < f.l in the 
usual way. 

The transformed equation is 

[_k2 + k~ - V(k)]F(k) 

=f iWf.l0L:dze-ilcZfooa(lz - z'l)f(L - z') dz' 

= H(k) + 1'(0) + ikf(O). (4.3) 

In the integral here, a andfmay be expressed in terms 
of their transforms: 

± (...!...)2Jdze-ilcZ fo dz'f
oo 

V(qI)eiql(z-z') dqI 
27T -CfC-oo 

X L: F(q)eiq(L-z') dq. 

The z integration gives a delta function which removes 
the qi integration, leaving 

± ...!... fO dZ'V(k)e-iIcZ'f
oo 

dqF(q)eiq(L-z'). 
27T -00 -00 

The z' integral will converge if 1m (k + q) > O. We 
choose q along the real axis, which means that we 
regard k as lying in the upper half plane. Performing 
the z' integration, we insert the result into (4.3) and 
find 

[_k2 + k~ - V(k)]F(k) =f V(k) _1 fOCi F(q)e
iqL 

dq 
27Ti -00 q + k 

= H(k) + 1'(0) + ikf(O). (4.4) 

This equation is valid over the entire k plane, not just 
the upper half k plane, if the integral is extended by 
analytic continuation. 

It is convenient to define a function tp(k) and an 
integral operator K(k) by 

k2 
- k~ + V(k) == tp(k) , 

1 fOCi d e
iqL 

-, -q- F(q) == K(k)F. 
2m -0Ci q + k 

(4.5a) 

(4.5b) 

The function tp(k) is equal to k 2 - k~€(k, w), the 
function whose zeros give the dispersion relation for 
the infinite-medium problem. This suggests the central 
role this function will play in the discussion to follow. 
The operator K(k) is unique to the finite-slab problem: 
Note that it vanishes exponentially as the thickness L 
of the slab increases. The important property of K is 
that K(k)F is analytic in the upper half plane for any 
function F(k) which vanishes as k goes to infinity. 

Using the notation (4.5), we rewrite (4.4) as 

tp(k)[F(k) ± K(k)F] = -S(k), (4.6a) 

S(k) = H(k) + 1'(0) + ikf(O) ± (k~ - k2)K(k)F, 

(4.6b) 

The previous discussion of analyticity has indicated 
that every single term on the right of (4.6b) is analytic 
in the upper half plane. This means that S(k) is 
analytic in the upper half plane. Yet, the function 
tp(k) appearing on the left of (4.6a) has singularities 
in the upper half plane. Clearly, this situation imposes 
some constraints on the contents of the square brackets 
in order that the singularities of tp(k) on the left do 
not appear in S(k) on the right. These restrictions, 
which are completely unrelated to the analytic con­
siderations involved in the standard Wiener-Hopf 
method, provide the equations we must ultimately 
solve. It is these restrictions which we must now 
consider. 

Before doing so, let us note that only the unknown 
transform F(k), and not the unknown H(k), appears 
in these square brackets. The restrictions on the 
contents of the brackets will not involve H(k) and, 
since these restrictions will determine F(k), there will 
be no further need for considering the unknown H(k), 
H(k) can of course be calculated from (3.7) once F(k) 
is known, but there is no reason to do so. This situ­
ation is analogous to that in the standard Wiener­
Hopf, wherein the compensating function, which is 
necessary at the outset, becomes superfluous before 
the calculation is completed. I6 

5. RESTRICTIONS RESULTING FROM 
ANALYTICITY REQUIREMENTS 

Consider the form of Eq. (4.6a). In those regions of 
the upper half k plane where tp(k) is analytic and 
nonzero, the upper half plane analyticity of K and 
of S demand that F(k) be analytic also. However, 
at those points where tp(k) vanishes, F(k) can have 
poles without destroying the analyticity of S. If there 

16 See, for example, P. M. Morse and H. Feshbach, Methods of 
Theoretical Physics (McGraw-Hili Book Co.,Inc., New York, 1953), 
p.978. 
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are N such po.ints, then F(k) will have the fo.rm 
N 

F(k) = ! ~ + tl>(k), (5.1) 
1 k - kn 

where 

1p(kn) = 0, 1m kn > 0, n = 1, ... ,N, (5.2) 

and where tl>(k) is analytic in the upper half plane at 
all po.ints that 1p(k) is analytic. [The qJn are numbers 
which are yet to. be determined. Ho.wever, we turn 
o.ur attentio.n first to. tl>(k).] Since F(k) is analytic 
belo.w 1m k = f-l > 0, it fo.llo.ws that the o.nly singu­
larities o.f tl>(k) are in the upper half plane and that 
these co.incide with the singularities o.f 1p. To. pro.ceed 
further, o.ne must describe the singularities o.f 1p. 
Altho.ugh the discussio.n here will be co.uched in 
terms o.f the dispersio.n functio.n fo.r the electro.mag­
netic pro.blem, it will be o.bvio.us ho.w an arbitrary 
kernel who.se Fo.urier transfo.rm is given will have to. 
be treated. 

If the electro.n gas representing the metal is treated 
as a zero.-temperature no.ninteracting system o.f free 
fermio.ns and if the scattering time is treated as 
co.nstant, then the co.nductivity tens Dr has a Fo.urier 
transfo.rm such thatiO 

2 2 3 f-lonq
2
w [1 ( fJ2) fJ - k fJ] 1p(k)=k -k ---- - t -- In-- -- , 

o 2 kPF 2 k2 fJ + k k 

(5.3) 
where 

{J = (± 1 + wlwc)IR + (ill). (5.4) 

(The ± here refers to. the sense o.f circular po.larizatio.n, 
as in 2.1 to. 2.5.) Here, n is the number density o.f the 
electro.ngas,PF its Fermi mo.mentum, we the cyclo.tro.n 
frequency, R = V Flwc is the cyclo.tro.n radius and 
I = V FT is the mean free path. The functio.n 1p(k) has 
branch po.ints at k = ±{J. If we trace thro.ugh the de­
tails o.f the derivatio.n o.f 1p fro.m a{lz - z'l), it appears 
that a natural cho.ice o.f branch cuts is alo.ng the two. 
lines k = ±fJu, where 1 :::;; u < 00. Thus, the o.nly 
upper half plane singularity o.f 1p is a branch cut 
running alo.ng the line k = {Ju, and tl>(k) is analytic in 
the entire cut plane, that is, at all k excluding the 
po.ints k = (Ju. 

At infinity, tl>(k) must decrease at least as rapidly 
as 11k, fo.r o.therwise F(k) wo.uld no.t have the 11k 
behavio.r demanded o.f Fo.urier transfo.rms in general 
and by Eq. (4.4) in particular. The fact that F(k) is a 
Fo.urier transfo.rm impo.ses co.nditio.ns o.n the behavio.r 
o.f tl>(k) near the branch cut. Fo.r instance, imagine 
the inversio.n o.f F(k) as being carried o.ut alo.ng a 
co.nto.ur which has been swept upward from the real 
axis to. encircle any po.les o.f F and the cut o.f tl>. The 

co.ntributio.n to. the co.nto.ur fro.m the neighbo.rho.o.d 
o.f the branch po.int will diverge if tl> grows faster than 
a po.le at k = {J, that is, near k = {J, tl>(k) must 
satisfy Itl>(k) I :::;; co.nst/lk - {Jla, where ~:::;; 1. Ex­
cluding the case o.f a po.le at the branch po.int (which 
co.uld be treated separately), we have ~ < 1. 

The main co.nditio.n determining tl>(k) arises when 
we try to. make S(k) analytic o.n the cut. The functio.ns 
in (4.6a) seem to. take o.n different values as k ap­
proaches the cut fro.m o.ne side Dr the o.ther, but we 
must ensure that S(k) has the same value, no. matter 
from which side k appro.aches the cut. If it do.es, then 
S(k) will be analytic acro.ss the cut. Acco.rdingly, let 
a plus Dr minus superscript deno.te the value o.f 1p, 
F, KF, and S as k appro.aches the po.int {Ju in the cut 
from o.ne side Dr the o.ther; that is, let 1p±(fJu), F±({Ju), 
K±(fJu)F, and S±({Ju) deno.te the limiting values o.f 
1p(k) , F(k) , etc., where k = fJ(u ± iE) and where € 

(a real po.sitive number) go.es to. zero in the limit. If 
S(k) is to. be analytic across the cut, it is necessary 
that S+({Ju) = S-(fJu). Using (4.6a) to. enfo.rce this 
equality, 

1p+({Ju)[F+({Ju) ± K+({Ju)F] 

= 1p-({Ju)[F-({Ju) ± K-({Ju)F]. (5.5) 

Ho.wever, K is analytic o.n the cut (as it is thro.ugh­
o.ut the upper half plane) and so. we can dro.p the ± 
superscript and write K±(fJu)F = K({Ju)F. We can 
evaluate KF by using (5.1) in (4. 5b) as 

K({Ju)F =! qJneiknL + K({Ju)tl> (5.6a) 
kn + (Ju 

with 

K(k)tl> == _1 roo dqe
iqL 

tl>(q). 
27Ti )-00 q + k 

Using (5.1) and (5.6) in (5.5) gives 

(5.6b) 

1p+({Ju)tl>+(fJu) - 1p-({Ju)tl>-(fJu) = [1p-({Ju) - 1p+({Ju)] 

x [! qJn ± L qJneiknL ± K({Ju)tl>] (5.7) 
fJu-k n (Ju+k n 

as the co.nditio.n the disco.ntinuity in tl> must satisfy 
if S(k) is to. be analytic. This is the fundamental 
equatio.n to. be so.lved. The metho.d o.f so.lving it draws 
heavily o.n the theo.ry o.f singular integral equatio.ns as 
develo.ped by Muskhelishvili and has po.ints o.f 
similarity with the metho.d o.f elementary so.lutio.ns 
develo.ped by CaseI7 and used by Zelazny et al. 18

•
19 fo.r 

neutron transpo.rt pro.blems. The fo.rm o.f this equatio.n 
seems to suggest that the unkno.wn functio.n tl>(k) can 

17 K. M. Case, Ann. Phys. 9, I (1960). 
18 R. Zelazny, A. Kuszell, and J. Mika, Ann. Phys. 16,69 (1961). 
19 R. Zelazny and A. Kuszell, Physica 27, 797 (1961). 



                                                                                                                                    

ELECTROMAGNETIC WAVES IN CONDUCTING SLAB 379 

be regarded as being proportional to the unknown 
coefficients tp" so that, as an ansatz, one could write 

el>(k) = I tpnAik). 
n 

A separate equation for each of the An(k) functions 
would result. This would still leave the coefficients tpn 
to be determined. The spatial boundary condition 
(3.12b) can be utilized to determine one of the coeffi­
cients, but it is not yet clear what information will 
fix the others. Moreover, in typical dispersion func­
tions, even the number of roots available, and hence 
the number of coefficients to be determined, changes 
with changes in the physical parameters. Thus, the 
number of added conditions needed to fix the tpn will 
somehow have to depend on the physical parameters, 
which at first sight seems unusual. 

The resolution of this paradoxical situation appears 
in the next section, for there we shall see that a set of 
mathematical side conditions, which must be imposed 
to solve for the discontinuity in el>(k) using 
Muskhelishvili methods, can be satisfied only if 
certain relations among the tpn are true. The number 
of these relations, happily, is equal to the number of 
coefficients to be determined and thus, the same 
techniques which determine the A,,(k) functions will 
also determine the fPn coefficients. 

6. SOLUTION OF THE DISCONTINUITY 
CONDITION 

Were it not for the presence of ±K<I> on the right 
of (5.7), we could rewrite (5.7) as 

el>+(fJu) = G(fJu)el>-(fJu) + g(fJu), (6.1 a) 

where 
G(fJu) == Vr (fJu)/1p+(fJu) (6.1b) 

and 

g(fJu) == ([1p-(fJu) - 1p+(fJu)]/1p+(fJu)}p(fJu) (6.lc) 

are given functions along the cut. In our case, however, 

N [1 e
iknL J p(fJu) == f tpn fJu _ k

n 
± fJu + k

n 
± K(fJu)el> 

(6.2) 

contains the unknown function el> and so is not a 
priori known. Fortunately, the troublesome term is 
of order e-Lil. This is because <I>(k) is analytic for k 
below /3; that is, for 1m k < 1/1, and hence the q 
integration in (5.6b) can be shifted upwards as far as 
1m q = 1/1. It is this fact which underlies the con­
vergence of the iterative solution to be given. 

E:quation (6.la) is the classical inhomogeneous 
Hilbert problem on an arc as discussed by Musk-

helishvili.20 His solution, in outline form, is essentially 
the following: Suppose that there is available a 
function X(k) with the following properties: 

(a) X(k) is analytic in the cut plane, the cut 
running along k = fJu. 

(b) X(k) is nonvanishing in the cut plane. 

(c) X(k) does not vanish at the branch 
point k = fJ. 

(d) X(k) grows less rapidly than a pole at 
k = fJ. 

(e) X(k) satisfies the boundary condition 
along the cut that 

X+(fJu)/X-(fJu) = G(fJu). 

(f) At infinity, X(k) behaves in one of the 
following three ways: 

(I) X(k) - constant. 

(2) X(k) - k-n (n positive integer). 

(3) X(k) - km (m positive integer). 

Then using (6.3e), Eq. (6.la) becomes 

iJ,+(fJu) el>-(fJu) g(fJu) 

X+(fJu) - X-(fJu) = X+(fJu) ' 

(6.3a) 

(6.3b) 

(6.3c) 

(6. 3d) 

(6.3e) 

(6.3f1) 

(6.3f2) 

(6.3f3) 

(6.4) 

which is a boundary discontinuity condition on the 
function el>(k)/X(k). [In the same sense, Eq. (5.7) was 
a boundary condition on the function 1p(k)el>(k), but 
el> / X has certain properties which 1pel> does not possess; 
namely, because of (6.3a) and (6.3b), el>/X is analytic 
everywhere except along the cut.] As a result, one can 
use the Plemelj formulas 

1/(X ± if:) = PX-l ± i7TI:5(X) 

to verify that a solution to (6.4) is 

el>(k) 1 roo g(fJt)fJ dt 
X(k) = 21Ti Jl (fJt _ k)X+(fJt) + P.(k) (6.5) 

where P.(k) is an arbitrary polynomial of degree s. 
(s is as yet unspecified.) The conditions (6.3c) and 
(6.3d) (as well as some on G and g we have not 
mentioned explicitly, but which are true here) lead 
to the conclusion, as Muskhelishvili shows, that (6.5) 
is the only solution to (6.4). 

20 Musk~elishvili is careful to stress that his treatment applies to 
arcs of fintte length, whereas we are here working on an arc (the 
branch cut of '1') which extends to infinity. If one wishes to retain 
the mathematical rigor of Muskhelishvili, the way to do it is to 
alter the definition of the spatial kernel a(lz - z'l) at Iz - z'l--+ 0 
so as to cause the branch cut in 1p(k) to terminate at another branch 
P?int at l~rge k. The discussion given here will change only in 
~hght detal!. Then at ~he very end of the problem, the singularity 
m a(lz - z I> at z = z can be restored, pushing the added branch 
point out to infinity. 
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The presence or absence of Ps(k) and the value of s 
depend on the behavior of X(k) at infinity. If <f>jX 
vanishes at infinity, then no polynomial Ps(k) can be 
tolerated in (6.5). For instance, in case (6.3f1), where 
X ---+ constant, the Ijk behavior of <f> is enough to 
make <f>jX vanish at infinity. The polynomial Ps(k) 
will be absent for similar reasons in the case (6.3f3) 
where X(k) has algebraic growth at infinity. On the 
other hand, for the case (6.3f2), where X""", k-n , 

<f>jX""", k n- 1 , a polynomial of degree s = n - 1 is 
allowed. This introduces n arbitrary constants into 
the solution for <f>(k). 

If perchance X(k) does go like km , then <DjX goes as 
Ijkm+l and Eq. (6.5), even with Ps(k) deleted, does 
not in general provide a solution unless g(fJt) has just 
those properties which cause the integral also to have 
Ijkm+l behavior as k ---+ 00. The properties needed 
are obtained by expanding (t - k)-1 in the integral 
as a power series in tjk and demanding that the coeffi­
cients of Ijk, Ijk2,"', Ijkm vanish. Thus, if X(k) 
goes as k m , Eq. (6.5) provides a solution only if m 
additional conditions are met: 

[<Xl tlg(fJt) dt =~, 1= 0, 1,' . " m _ 1. (6.6) 
Jl X+(fJt) 

We see now that case (6.3f1) provides a unique 
mathematical solution, (6.3f2) provides a mathe­
matical solution with n arbitrary constants, and case 
(6.3f3) provides a unique mathematical solution only 
under m additional constraints. It will turn out that 
the N constants f{Jn which appear in g(fJu) provide 
exactly the amount of freedom needed to obtain a 
unique answer to the underlying physical problem in 
all three cases. However, to show this and to continue 
with the solution, it is necessary to construct X(k). 

Muskhelishvili also gives the prescription for con­
structing the function X(k). Taking the logarithm of 
(6.3e) gives him 

log X+(fJu) - log X-(fJu) = log G(fJu), 

which can be regarded as a boundary condition on 
log X. This leads him to consider the function 

r(k) = _1 [<Xl log G(fJu)f3 du (6.7a) 
27Ti Jl fJu - k 

and 
Xo(k) = exp r(k). (6.7b) 

The integral here will converge only if G(fJu) goes to 
1 at infinity (it does for any a(z) which has a trans­
form), and even then only if we choose that branch 
of the logarithm for which log Vr(fJu) = log tp+(fJu) 
as u ---+ 00. This choice of branches will be made in 
all that follows. 

Clearly Xo(k) satisfies all the conditions of (6.3) 
except possibly (6.3c) and (6.3d), relating to growth 
or decay near the branch point. Muskhelishvili then, 
without destroying any of the other conditions, mul­
tiplies or divides Xo(k) by integer powers of (fJ - k) to 
produce a function 

X(k) = (fJ - k)"Xo(k), (6.8) 

A a positive or negative integer or zero, which stays 
finite at k = fJ and which does not grow as fast as a 
pole there. Such a function satisfies all conditions 
(6.3). Its behavior at infinity, which follows from 
(6.7) and (6.8), is as k\ which puts it in one of the 
three cases (6.3), depending on the value of A. 

The choice of A depends on behavior of r(k) in the 
neighborhood of the branch point. One can write, 
again following Muskhelishvili, 

r( k) = _1 [<Xl [lOg G(fJ) + log G(fJu) - log G(fJ)] fJ du 
27Ti Jl f3u - k f3u - k 

= _1 [-log (fJ 7" k) log G(fJ) + ~(k)], 
27Ti 

where ~ is bounded at k = fJ. We shall anticipate an 
important result which we will prove shortly and write 
log G(fJ) = 27Ti(N - 1), where N is the number of 
upper half plane roots of tp(k), that is, the number 
of coefficients f{J" to be determined. Because of this 
we have 

r(k) = -(N - 1) log (fJ - k) + (27Ti)-I~(k) 

which, using (6.7) and (6.8), gives 

X(k) = (fJ - k)HI-N exp ~(k)j27Ti. 

The only choice of integer A which causes X(k) to be 
nonzero at k = fJ, but keeps its growth at fJ slower 
than a pole, is A = N - 1. Putting this value in (6.8), 

X(k) = (fJ - k)N-l exp ~ [<Xl log G(fJu)f3 du. (6.9) 
27Tl Jl fJu - k 

This choice of A renders the physical problem 
determinate: Suppose first that N = 0. Then X(k) "'" 
k-1 , which means f{J(k)jX(k) ""'" c.onstant at infinity. 
Hence, a polynomial of degree zero (a constant) can 
appear in (6.5) giving 

<f>(k) = X(k) [<Xl g(fJt)fJ dt + PoX(k) (6. lOa) 
27Ti Jl (fJt - k)X+(fJt) 

and, with N = 0, Eq. (5.1) gives 

F(k) = <f>(k). (6.1Ob) 

The Fourier transform F(k) thus contains one arbi­
trary constant, Po, whose value can be adjusted to 
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satisfy (3.12b), the spatial boundary condition on the 
field. On the other hand, if N is a positive integer, then 
X(k) f""oo..I kN-1, which means that 

<I>(k) = X(k) roo g«(3t)(3 dt 
27Ti J1 «(3t - k)X+«(3t) 

(6.11) 

is a solution, provided,that N - 1 side conditions of 
the form (6.6) are satisfied. These N - 1 constraints 
imposed on the N constants rpn' which appear in 
g«(3u) , still leave enough freedom to satisfy the one 
spatial boundary condition on the field. 

The idea that the side conditions (6.6) can deter­
mine the coefficients of the poles appears in the paper 
by CaseP Implied in his treatment is the necessity 
of a condition relating the number of poles and the 
Muskhelishvili index K (= - A). An explicit demon­
stration that the condition is satisfied for the trans­
port equation appears in the paper by Zelazny, 
Kuszell, and Mika.18 In our case, a similar demon­
stration can be made, also based simply on counting 
the zeros of 1p(k). The relevant theorem is that if a 
function 

1p(k) = R(k)ei9(k), R, () real, (6.12) 

is analytic within and on the boundary of a region, 
then the number of zeros enclosed by the boundary 
is Ij27T times the change in () around the boundary. 
Here, we take a contour composed of the circle at 
infinity deformed inwards to enclose the two branch 
cuts of 1p, along k = ±(3u, 1 ::s;; u < ro. Since 1p(k) is 
even, half of its zeros are in the upper half plane and 
half the change in () is contributed by that part of the 
contour lying in the upper half plane. Hence N, the 
number of upper half plane zeros of 1p(k), is equal 
to Ij27T times the change in () along the upper half 
plane contour. The contour is composed of the upper 
infinite semicircle and the loop 

k = (3(u - if), ro -->- u -->- 1 (in below cut), 

k = (3 + i(3Eeicp , 7T -->- rp -->- 0 

(semicircle about branch), 

k = (3(u + h), 1 -->- u -->- ro (out above cut), 

surrounding the upper branch cut. 
At infinity, 1p(k) = k 2 + V(k) ~ k 2 , which gives a 

phase change of 27T around the upper infinite semi­
circle. Along the cut, 1p(k) takes on a perfectly definite 
value at k = (3. Hence, there is no change in () on the 
tiny semicircle around the branch point. Moreover, 
because 11p(k) I is the same on either side of the cut 
at k = (3 and again at k = ro, the change in () can be 
expressed as the change in i-I log 1p. Thus 

N = (27T)-1(27T + i-I!!.. log 1p) 

where Ll log 1p is the change in log 1p coming in below 
the cut and going out above the cut: 

Lllog 1p = [1p-«(3) - 1p-( ro») - [1p+( ro) - 1p+«(3»). 

Recalling the necessity of choosing that branch of 
log 1p+ for which log (1p-j1p+) -->- 0 at infinity, we are 
left with 

N = 1 + (27Ti)-1 log 1p-«(3)j1p+«(3) 

or, from (6.1b) 

log G«(3) = 27Ti(N - 1). (6.13) 

This is the important result which we anticipated 
prior to Eq. (6.9) and which is analogous to the 
demonstration by Zelazny et al. 

7. COMPLETING THE SOLUTION 

The properties of <I>(k) discussed so far guarantee 
that it can be represented as a Cauchy integral: 

<I>(k) = roo rp(t)(3 dt . 
Jl (3t - k 

(7.1) 

This representation is useful both in the evaluation 
of the Fourier inversion of Eq. (5.1), 

j-y±(z) = i rpneiknZ - roo rp(t)eiPtZ(3 dt (7.2) 
n=1 Jl 

and in the evaluation of K<I>, Eq. (5.6b), 

iOOrp(t)eiPIL dt 
K«(3u)<I> = - . 

1 U + t (7.3) 

In order to derive an equation governing rp(t), we 
first apply the Plemelj formulas to Eq. (7.1) to obtain 

27Tirp(v) = <I>+«(3v) - <I>-«(3v). (7.4) 

Then we insert (6.2) into (6.1c) and that into (6.lOa) 
or (6.11) to obtain 

Note, however, that because of (6.1b) and (6.3e) 

We can therefore regard the t integration in (7.5) as 
being a line integral in the complex 'Y} plane, where the 
path of integration is inward along 'Y} = (3(t + iE) 
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and outward along 1] = (3(t - iE). That is, 

<P(k)=- 2rpn --±--X(k)l d1] { N [1 e
iknL J 

27Ti c(1] - k)X(1]) n=1 1] - kIt 1] + k n 

i oo rp(u)eiPuL{3 dU} 
=f + c5NO POX(k). (7.6) 

1 1] + {3u 

The contour C consisting of the lines above and 
below the cut can be augmented by adding to it the 
infinitesimal semicircle around the branch point at 
1] = (3 without changing the value of the integral, 
because X( 1]) takes on a perfectly definite finite value 
at 1] = {3. This converts the contour C to a continuous 
path coming in from infinity above the cut, circling 
the cut, and going off to infinity again below the cut. 

Suppose now, for definiteness, that N ¥: 0. (The 
electromagnetic problem of primary interest will in 
fact have N = 1 or N = 2. For a general problem in 
which N = 0, a trivial modification of the N¥:O 
procedure is needed.) Then the 1] integrand in (7.6) 
goes as [XC 1])1]2]-1 = 1]-(.\"+1) and therefore the con­
tour C can be closed by adding to it the circle at 
infinity which starts at the lower side of the cut, 
encircles the complex 1] plane in the negative sense, 
and ends at the upper side of the cut. Within this 
closed contour, the only singularities are at 1] = k, 
1] = ±kn and 1] = -(3u and we can evaluate (7.6) 
using residues as 

N [1 e
iknL J 100 

rp(u)i
puL 

<P(k) = - 2 CPn -- ± -- ± 
n=1 k - kn k + kn 1 k + (3u 

+ X(k){ f CPn[ 1 ± e
iknL 

J 
n=1 (k - k,,)X(kn) (k + kn)X( -kn) 

100 rp(u)eifJuL{3 du } 
=f . (7.7) 

1 (k + (3U)X( -(3u) 

Using this to evaluate the right side of (7.4) gives 
the equation governing rp(v), namely, 

() 
X+({3v) - X-({3v) { ~ [ 1 

rp v = k rpn 
27Ti n=1 ({3v - kn)X(k,J 

± =f . (7.8) e
iknL 

] 100 

rp(u)e
iPuL 

du } 
({3v+kn)X(-kn) 1 (u+v)X(-{3u) 

The linearity of this equation allows one to write 
N 

rp(v) = 2 rpn/n(V) (7.9a) 
n=1 

where fn(v) satisfies the integral equation 

X+({3v) - X-(pv) { t 
fn(v) = 27Ti ({3v - kn)X(kn) 

-. (7.9b) ± 
eiknL -r:l oo fn(u)ei/luLdu .} 

({3v + kn)X( -kn) 1 (u + v)X( -{3u) . 

This equation can be solved iteratively. It is clear that 
successive terms converge as e-1mpL = e-L11 and, in 
fact, if (3L > 1, an asymptotic evaluation of the inte­
gral shows that convergence is more like e-L11/({3L)2, 
so that even the zeroth iterate is close to exact. 

Having iterated (7.9b) to sufficient accuracy to 
determine fn(v), we can determine the coefficients 
rpn' Inserting (6.2) into (6.1c) and that into the 
subsidiary condition (6.6) gives 

[00 ~ [1p-({3t) - 1p+({3t)J 
Jl X+({3t) 1p+({3t) 

X {! rpn[ 1 ± e
iknL J 

{3t - kn {3u + k n 

=f [00 rpn(u)e
ifJuL 

dU} = 0, 1= 0, t,' . " N - 2. 
Jl U + t 

The same steps which led from (7.5) to (7.7) can be 
used here to evaluate the t integral, giving 

-1 [k~ (_kn)leiknL 
(3H12 rpn X(k n) ± X(-kn) 

=f [00 (-{3u)lrpn(u)e
ifJuL

{3 dUJ = 0. 
Jl XC-{3u) 

Inserting (7.9a) here then gives 
N 

2Clnrpn = 0, 1 = 0, t,' "', N - 2, (7.10a) 
11=1 

kl (-k )leiknL 
C = _n_ ± -'---.....:n~_ 

In X(kn) X( -kn) 

-r: {3H11OO 

(-U)1n(u)e
i
/l
uL 

du , -. (7. lOb) 
1 X( -(3u) 

while inserting (7.9a) into (7.2), and that in turn into 
the spatial boundary condition (3.12b) gives 

i 2 rpn{ (1 + ~:) ± (1 - ~:) eiknL 

- {3 fT (1 + ~:) ± (1 - ~:) eifJtL 
Jfn(t) dt} = 1. 

(7. tOc) 

This is a system of N equations for the N coefficients 
rpn' Having determined these, one has determined 
the functions (restoring the even and odd superscript 
±) in (7.2): 

f±(z) = if rp;[eik •• - {3 [OOf~(t)eiPt. dt]. (7.11) 
n=1 Jl 

From these, the field in the slab follows by combining 
(3.1) and (3.lOa) and (3.11a): 

e(z) = f+(z) + f-(z) + f+(L - z) - f-(L - z). 

(7.12) 
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8. DISCUSSION 

The solution of the problem of determining the 
field in the slab is now complete. It has been reduced 
to performing the following sequential calculations: 

(a) Determine the roots of the dispersion relation 
(5.2). 

(b) Evaluate the functions X(k) defined in (6.9). 
(c) Iterate (7.9) to sufficient accuracy to determine 

in· 
(d) Solve (7.10) for f{in' 
(e) Evaluate the expressions (7.11) and (7.12) for 

the field e(z). 

Although these steps in general call for numerical 
methods, there are still cases where considerable 
analytic progress can be made. For instance, suppose 
the parameters of the problem are such that there is 
only one root of the dispersion function. Then there 
is no need to solve for the coefficients f{in; the single 
coefficient f{il is fixed by boundary conditions. If, 
furthermore, the thickness L were such that LIZ» 1, 
then the first iterate of (7.9) might be sufficiently 
accurate. This first iterate can be obtained analytically, 
and one would then have a situation in which the 
wave corresponding to the root of the dispersion 
relation suffers Fabry-Perot resonances which are 
modified by the continuum solutions embodied in 
the integral. 

In order to establish contact with the conventional 
Wiener-Hopf technique, we consider another case in 
which our equations for E(k) can be solved explicitIy­
namely, the semi-infinite slab. There will be no re­
strictions on the kernel or on the number of roots 
other than the existence of a finite range I for the 
kernel. For the semi-infinite slab, we set L equal to 
infinity. Then (7.9) and (7.10) become 

27Tif (t) = X-«(Jt) - X+«(Jt) 
n (kn - (Jt)X(kn) 

(S.la) 

and 
N k! rp L ~ - 0 1-0 1 ... N - 2 (S.1b) 

n=l X(k
n

) -, -", . 

To solve (S.1 b), we make use of the identity 

fk~/[fr(km - kn)] = 0, 1= 0, 1,"', N - 2. 
11=1 m:Fn 

(S.2) 

This identity is easily established by evaluating 

1==_1 . J: k! dk/[fr (k m - k)], 1:S; N - 2, 
27T1 j m=l 

where the contour encloses all the k m • Evaluating by 

contours, we get the left side of (8.2). Substituting 
k = liz and evaluating by contours (this time the 
contour encloses z = 0 and no singularities), we get 
the right side of (8.2). 

To use (S.2), we define bn by 

f{inIX(kn) = bn/ IT (km - k n)· (S.3) 
m#n 

Then (8.1b) becomes 

L k~bn/[lI(km - kn)] = 0, 1= 0, 1,···, N - 2, 

which, by virtue of (8.2), implies that all bn are equal, 
say to ibo. Thus from (S.3), 

f{in = [iboX(kn)]/[n}km - kn)} (8.4) 

Combining this with (S.la) gives 

27Ti L f{infn(t) = ibo[X-(,Bt) - X+(,Bt)] 

X ~/(kn - P't)J-l[lI(km - kn)T
1

• 

However, using (S.2) again with kN+l == (3t and I = 0 
allows us to evaluate the sum here so that 

27Ti L f{infn(t) 

= ibo[X-(t1t) - X+(t1 t)]/[TIl(km - ,Bt)} (8.5) 

Inserting (S.4) and (8.5) into (7.11), we have 

f±(z) = -ibo(i X(kn)eiknZ 
n=l IT (km - k n ) 

m*n 

_ L f'" [X-«(Jt) - X+(,Bt)]eiPtz dtj 
2 . N (86) 

7T1 1 II (k
m 

- (Jt) " 
m=l 

(For N = 0, the solution is just the integral with the 
factors in the denominator deleted.) 

Since there is no difference between i±(z) in the 
L = 00 limit, we have e(z) = 2J±(z) and the solution 
(8.6) is complete except for bo, a normalization 
factor which is easily fixed by considerations based on 
the relation between E(k ~ 00) and the power series 
expansion of e(z) about the origin. 

The solution (8.6) given here can also be derived by. 
a slight modification of the standard Wiener-Hopf 
technique.21 This form turns out to be most useful 

21 The modification of the standard Wiener-Hopf method 
needed is to choose the function to which the Wiener-Hopffactori­
zation will be applied to be free of all zeros, not just those in the 
strip -Ill < 1m k < ft. When this is done, all contour integrals 
arising can be shifted into the upper half plane where the only 
singularities will be the branch cut of the dispersion function. The 
contour can surround this cut and, after some manipulation, will 
give rise to the function X(k) defined in (6.9) here. 
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for evaluating the large z behavior in those cases (such 
as helicon propagation below the doppler-shifted 
cyclotron edge) where the integral provides the long­
ranged term. 
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State labeling of the irreducible representations of SUs is done by using Littlewood's rules for the 
analysis of products of representations of unitary groups. The method is generalized to any SUn. 

INTRODUCTION 

Through a purely algebraic and infinitesimal 
approach, Baird and Biedenharnl have studied the 
problem of state labeling for the group SUn. They 
explicitly carried out the analysis for SUa and have 
pointed out that though the generalization of the 
method can be done in principle to any SUn, it is how­
ever laborious. Here we derive the same results for 
SUa in a much simpler manner by using Littlewood's 
rules for the analysis of product of representations of 
unitary groups. This method is generalized to any SUn. 

1. STATE LABELING OF THE IRREDUCIBLE 
REPRESENTATIONS OF SUa 

The generators of SUa, in Cartan's canonical form 
can be chosen as 

HI = ci - cL 
Ep = ci, 

E_p = cL 

H2 = C: - cL 
Ey = cL 

E_y = C~, 

E~ = ci, 
E_~ = C~, 

where2 C:' = !;=1 apsa~', fl, fl' = 1, 2, 3 are genera­
tors of Ua, and aps and a~ are, respectively, the boson 
creation and annihilation operators. From the root 
diagram of SUa, the numerical coefficients that are to 
be taken for the generators can be found. a The basis 
vectors for an IR (Irreducible Representation) of Ua 
can be written as homogeneous polynomials in ails 

operating on a certain vacuum ket 10). The inner 
product of the two states P 10), P' 10) is 

(p, PI) = (01 P+P' 10), 

• G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4,1449 (1963). 
2 M. Moshinsky, J. Math. Phys. 4, 1128 (1963). 
• R. E. Beherends, J. Dreitlein. C. Fronsdal, and B. W. Lee, 

Rev. Mod. Phys. 34, 1 (1962). 

where P+ is obtained by replacing all ails in P by a~.2 
The labeling problem is solved by the canonical 

factorization SUa)SU2 x UI • The generators of the 
SU2 subgroup are HI' E~, E_. and q + c: - 2q = 
H is the generator of UI commuting with the above 
SU2 subgroup. The IR's of SU2 and UI can be charac­
terized by nonnegative integers A' and m', respectively. 
The IR's of SU2 x U1 contained in the IR (hI, h2) of 
SUa are determined by Littlewood's rules4 for the 
multiplication of representations of unitary groups. 

Let the symbols "x" denote the boxes in the Young 
diagram corresponding to (A') of SU2 [which is 
equivalent to (A' + q, q)] and the symbols "a" denote 
the boxes of the diagram (m') of UI . Then the diagram 
corresponding to the IR (A', m') of SU2 X U1 con­
tained in (hI, h2) of SUa is of the form 

where 

q ;.' "" 

II r-I II 
X"X X'''X a"a 

q "" 
111-1 
X"X a' 'a, 

q + A' 1- Xl = hI, q + x2 = h2' Xl + X 2 = m'. 
(1) 

Littlewood's rules lead to the inequality 

A' ~ X 2 • (2) 

Equations (1) determine Xl and X 2 uniquely in terms 
of hI' h2 , A', m', and hence the IR (A', m') of SU2 X U1 

occurs, if at all, only once in (hI, h2) of SUa. The 
highest-weight state in (A', ms) is 

P = (1{+q-h2(13)Q(12)h2-Q(2)h.-;,·-q . .. , (3) 

4 D. E. Littlewood, Theory of Group Characters (Clarendon 
Press, Oxford, 1950), 2nd ed., p. 94. 
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where 

(SI ... Sr) = ~;~S~'.'. ~ sr 

=! E (Sl'" Sr)a S11 •.• a srr • 
(81' •. s,) 

All the other states in the IR (A'm') are obtained by 
operating the lowering operator in SU2 , (E_aYc on P. 
All the states in the tR (hI' h2) may be labeled by 
A', m', and v' where v' is the eigenvalue of HI in SU2 • 

The range of variation of A.' and m' is fixed by equa­
tions (1) and inequality (2). However, m' is not the 
eigenvalue of H which is the generator of UI . 

To compare these results with those of Baird and 
Biedenharn, we observe that A.' = 2A, where A(A + 1) 
is the eigenvalue of the SU2 Casimir invariant A2, 
with A integral or half-integral and m' = tChl + 
h2 - 6m), where 6m is the eigenvalue of H. This 
latter relation is obtained by operating H on the 
highest-weight state P. The nonnegative integers hI' 
h2 are the same as p, q in Ref. 1. Equations (1) and 
inequality (2) lead us to the following range for A' 
and m': 

hI - h2 ~ A.' + m' ~ hI + h2' 

h2 - hI ~ A.' - m' ~ hI - h2 • 
(4) 

These in turn give the range for A and m, which is a 
parallelogram with vertices 

[hi /2, (hI - 2h2)/6], [h2/2, (h2 - 2hl )/6], 

[(hI - h2)/2, (hI + h2)/6], [0, (2h2 - hl )/3]. 

These results are identical with those obtained in 
Ref. 1. 

2. GENERALIZATION TO ANY SUn 

The generators of SUn in Cartan's canonical form 
may be chosen as 

Hi = C: - C~ i = 1 ... n - 1, 

Ea = C/, E_a = c~ i < j = 1 ... n. 

A canonical subgroup SUn_ l X Ul contained in the 
above SUn has the following generators: 

Hi = C; - C~=~, i = 1 ... n - 2, 

Ep = C/, E_fJ = C~, i < j = 1 ... n - I 

which are the generators for SU n-l and H = !~::l c:­
(n - I)C: is the generator of Ul commuting with the 

above SUn_1 subgroup. The IR's (A, m) where 
(A) = (AI, A2, ... ,An- 2), of SUn_l X UI contained 
in the IR (h) = (hI' .. hn- l ) of SUn are determined 
according to Littlewood's rules by the following 
diagrams: 

where 

q 

I~ 
x"x x .. ""· "x a"a 

Q 12 X2 

r---I I I I~ 
X"X X"" "X a"a 

Q An_2 Xn-2 

II II I~ 
X"X x"x a"a 

q Xn-l 

I~ r--r 
X" x a" a, 

q + AT + Xr = hr , r = 1 ... n - 2, 

q + Xn-l = hn- l , Xl + X 2 + ... + X n- l = m, 

Ar 2 Ar+! + Xr+!' r = I ... n - 3, An- 2 2 Xn-l' 

(5) 

Equations (5) determine uniquely all Xr in terms 
of (h), (A), and m. Hence, the IR (A, m) of SUn_1 X U1 

contained in (h) of SUn is contained only once. The 
highest-weight state of the IR (A, m) of SUn_1 X U1 is 

n-3 
p = II(12 ... r)A.r-A.r+l-"'r+l(12 ... n _ 2)A.n-2-",n-l 

r=l 
n-2 

X (12' .. n - l)q II(12 ... rn)"'r+l(n)"'1 

The highest-weight states P are labeled by the param­
eters (A) and m which vary, subject to the equa­
tions and inequalities (5). The eigenvalue M of H is 
given by operating H on P. 

After normalising the highest-weight polynomials 
according to the definition of the inner product 
mentioned, the reduced matrix elements of the 
generators of SUn can be directly obtained by operat­
ing the generators on the highest-weight states P. 
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. After ~iscussing the basic ~otions of quantizations as representations of the Weyl relations, a criterion 
IS establIshed for a symplectIc transformation on a classical linear system to be unitarily implementable 
in the free (zero-interaction) representation. The result is applied to the temporal propagators of 
o cp = m2cp + Kcp to obtain a condition which is sufficient to ensure that they are unitarily implementable 
in the free representation of the quantized Klein-Gordon field of mass m. Necessary conditions are also 
?btained when K ~omm':ltes with m2! - ~. Several example~ are discussed, the most interesting of which 
IS that of a mass Jump (I.e., K = m II), where the results given are fairly complete. 

I. INTRODUCTION 

A general, mathematically rigorous prescription 
for the quantization of linear systems has been 
available for quite some time.1.2 The procedure has 
been applied to the relativistic equations of modern 
physics describing the motions of free (fundamental) 
particles to give a precise meaning to the notion of their 
associated quantum fields. Using the above pre­
scription, it is possible to quantize the perturbed 
Klein-Gordon equation DIP = m2IP + KIP (K linear, 
bounded, perhaps time-dependent). However, it is not 
true, in general, that the transition from one time to 
another defined by this equation can be effected by a 
unitary transformation in the conventional (free, zero­
interaction) representation of the quantized Klein­
Gordon field associated with mass m. This would 
mean that not all of the dynamical matrix elements 
between free-particle normalizable states would be 
finite. From another point of view this would also 
imply that the total energy would not be a self-adjoint 
operator ( observable) in this representation. In this 
paper, conditions on K are determined which ensure 
the unitary implementability of these dynamical 
propagators in the conventional representation of the 
Klein-Gordon field. 

In Sec. II, the basic notions of quantizations and 
symplectic transformations are introduced. Conditions 
for symplectic transformations on general classical 
linear systems to be unitarily implementable in the 
conventional representation are discussed. A criterion 
equivalent to those given by Shale3 and Segal,4 
but more functional in the present situation, is 
deduced. This condition is used, in Sec. III, to establish 
a sufficient condition for the unitary implementability 
of the above propagators in the conventional repre-

1 I. E. Segal, Illinois J. Math. 6, 500 (1962). 
• I. E. Segal, Lectures in Applied Mathematics (American Mathe­

matical Society, Providence, R. r., 1963), Vol. 2. 
3 D. Shale, Trans. Am. Math. Soc. 103, 149 (1962). 
• I. E. Segal, Trans. Am. Math. Soc. 88,12 (1958). 

sentation of the Klein-Gordon field. The analysis is 
carried out for the case when K is a positive, bounded, 
linear, time-independent operator on the space of 
square-integrable functions defined on the spatial 
region over which the perturbed equation is defined. 

The criterion is applied, in Sec. IV, to several more 
particular examples. In the commutative case (K 
commutes with m2] - A) a necessary condition is 
derived. It is also shown that the propagators associ­
ated with a mass jump (Le., K = m'2/) are never 
unitarily implementable in the free-field representation 
of mass m regardless of the dimension of space. 
However, in the cutoff theory, (i.e., for the spatial 
region being [0, 27T ]n) the result holds true if the 
number of dimensions, n, is ~ 3. 

II. QUANTIZATIONS AND SYMPLECTIC 
TRANSFORMATIONS 

Before discussing the problems indicated in the 
Introduction, a short exposition of the definitions and 
general theory of the transformations of field observ­
abIes and states is given (following Refs. 1, 2, and 3). 
Given a real linear space L endowed with a non­
degenerate, skew-symmetric, bilinear form Be .), 
a Weyl system over (L, B) is defined as a mapping 
x ~ W(x) from L into unitary operators on a complex 
Hilbert space Jew satisfying the Weyl relations 

W(x)W(x') = exp [!iBex, x')]W(x + x') 

along with the condition that W(·) is weakly contin­
uous when restricted to finite-dimensional subspaces 
of L. Associated with any Weyl system W(·), the 
concrete Weyl algebra of bounded field observables is 
defined to be the uniform closure of U ~ F, where F 
ranges over the finite-dimensional subspaces of L, 
and t) F is the weakly closed ring of operators generated 
by {W(x); x E F}. 

In the particular case when L is a real Hilbert space 
and B(',') is 1m (',')c where (',')c is the (complex) inner 
product of the complexification of L, such Weyl systems 

386 



                                                                                                                                    

PERTURBED KLEIN-GORDON EQUATION 387 

are known to exist. In fact, when L is an infinite-di­
mensional Hilbert space5 there are continuumly many 
unitarily inequivalent Weyl systems as opposed to the 
finite-dimensional situation where the Weyl (expo­
nentiated) form of the Schrodinger representation is 
essentially the only Weyl system. Thus the concrete 
Wely algebras are, in general, not unitarily equivalent. 
However, it is known6 that any two Weyl algebras 
arising from Weyl systems W ~nd ~', are al~ebraic~lly 
isomorphic by means of a umque Is?morphlsm w~lc.h 
takes W(x) into W'(x) for all x m L, Hence It IS 
possible to define a unique abstract C*-W~yl .algebra 
o with distinguished elements W(x) satIsfymg the 
Weyl relations, as the equivalence class of all such 
concrete Weyl algebras. Then, in the usual manner, 
there is associated with each state E of 0 a unique 
(to within unitary equivalence) representation of 0 
as operators on a complex Hilbert space. However, 
for an arbitrary state, the images of the distinguished 
elements W(x) of 0 under the associated representa­
tion will not in general satisfy the continuity condition 
mentioned previously. For this reason one usually 
restricts his attention to the physically more relevant 
representations associated with regular states; namely, 
those states E such that if A, B EO then E[A * W(x)B] 
is continuous, as a function of x, on each finite­
dimensional subspace of L,7 Representations of the 
Weyl relations relative to these states will be called 
quantizations. Our concern, in fact, will be only with 
pure regular states. Recalling that any pure state 
determines an irreducible representation, it is clear 
that pure regular states on 0 give rise to irreducible 
quantizations. 

Let Sp(L) denote the multiplicative group of real 
bounded linear transformation on L which preserve 
B(', '). Clearly these are precisely the type of bounded 
linear transformations required to ensure that 
x -- W(Tx) is a quantization if W(-) is. For T E Sp(L), 
it has been shown8 that OCT) defined by 

[OCT) WJ(x) = W(Tx) , x E L 

can be extended to a unique *-automorphism of 
o [likewise denoted by OCT)]. Furthermore any 
*-automorphism 0 of 0 determines an automorphism 
0* of the states of 0 through the contragredient 

• This will be the case of interest in the subsequent sections. In 
the remainder of this section the discussion will be restricted to this 
situation. 

6 The proof is given in Ref. 6 in more generality. 
7 A Weyl algebra 0 over (L, B), where L is a Hilbert space with 

B as above, not only has an abundance of states, it also has regular 
states. 

8 I. E. Segal, Kg!. Danske Videnskab. Selskab, Mat.-Fys. Medd. 
31, No. 12 (1959). 

action 
(O*E)(A) = E(O-lA), A EO. 

Both 0(·) and 0*0 are multiplicative. For T E Sp(L), 
O*(T) leaves the set of pure and/or regular states 
invariant. 

The above forms the basis of the general theory of 
quantizations and transformations offield observables 
and states. Additional results will be given in the 
subsequent sections as they are needed. The main 
problem is now stated in this general context. 

Suppose E is a pure regular state and W(·) on Jew 
is a representative of the equivalence class of unitarily 
equivalent quantizations determined by E. Then 
W(Tx), x E L is a well-defined operator on Jew and 
for T E Sp(L) the mapping x -- W(Tx) is a quantiza­
tion. The problem then is to determine conditions on 
T E Sp(L) which will ensure that the two quantizations 
are unitarily equivalent; i.e., when can the induced 
action of T on Jew be implemented by a unitary 
transformation Y T satisfying Y TW(X) = W(Tx) Y T 
for all x E L, In the future when this situation occurs 
T will be said to be unitarily implementable. 

The first result in this direction in the particular 
case of the conventional representation9.Io was given 
by Sega1.4 Using the theory of integration over Hilbert 
space, it was shown that, if Tis a closed, densely defined, 
linear operator on L with dense range, then T is 
unitarily implementable in the conventional represen­
tation if and only if S = (T*T)! is nonsingular and 
has the form I + A where A is Hilbert-Schmidt. 
Denote by (A) the set of operators which satisfy the 
above conditions. 

Theorem 2.1. TE (A) if and only if T is bounded, 
linear, with bounded inverse, and S = I + A where A 
is Hilbert-Schmidt. 

Proof Suppose T E (A). Since T is closed, densely 
defined, and linear it has a unique polar decomposition 
T = US where S is self-adjoint with domain D(S) = 
D(T) and U is a partial isometry with initial domain 
u*u = R(T*) = R(S)ll and final domain UU* = 
R(T) = L since R(T) is dense. But Sis nonsingular; 

• The conventional (zero-interaction, free) representation is 
characterized (see Ref. I) as being the unique one which preserves 
positivity of energy. For a suitable choice of Land B(', .), it is pre­
cisely the Fock-Cook representation found in the usual treatment 
of quantum field theory. Cook (Ref. 10) was the first to give it a 
mathematically rigorous foundation. Henceforth the state to which 
this representation corresponds will be denoted by Eo and the 
representation by Wo. 

10 J. M. Cook. Trans. Am. Math. Soc. 74, 222 (1953). 
11 R(TO) is the closure of the range of TO. Here we are confusing 

projections with their ranges. For a proof of the pola~ decomposition 
and the definition of "nonsingular," see M. A. Nalmark, Normed 
Rings (P. Noordhoff Ltd., Groningen, The Netherlands, 1959), 
pp. 284 and 285. 
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hence R(S) is dense in L and consequently U* U = L. 
Thus T = US where Uisunitary.12.13Now S = / + A, 
where A is Hilbert-Schmidt. Thus S is bounded on 
D(S) and is closed since S is self-adjoint. Therefore 

D(S) = D(S) and hence D(T) = D(S) = D(S) = 
D(T) = L since T is densely defined. The preceding, 
along with I/Txl12 = IISxl/ 2 ::::;; IISI/2 IIxl1 2 for all x E L, 
and the fact that S = / + A is bounded implies that 
T is everywhere defined on L and bounded. Since 
R(S) is dense in L, S is one-one. For if Sx = 0, then 
(Sx,y) = 0 and (x, Sy) = 0 for all y E L. But R(S) 
is dense and so x = O. Thus S possesses an inverse, 
S-I, with D(S-l) = R(S) and R(S-l) = D(S) = L. 
However S = / + A where A is Hilbert-Schmidt and 
hence completely continuous and R(/ + B) is closed 
for any completely continuous operator BY Thus 

R(S) = R(S) = L since R(S) is dense in L. Thus 
D(S-l) = R(S) = L and so S-l is an everywhere 
defined, bounded, linear operator by the Hellinger­
Toepletz theorem. Consequently T-I = S-IU* exists 
as an everywhere defined bounded linear operator. 

Conversely, suppose T is linear, bounded with 
bounded inverse on Land S = (T*T)! = / + A 
where A is Hilbert-Schmidt. Since T is bounded, 
linear and everywhere defined, T is closed. Also 
R(T) = D(T-I) = L. Thus T is closed, densely 
defined, linear with dense range and S = / + A 
where A is Hilbert-Schmidt. Since T is bounded 
S = (T*T)! is a (bounded) self-adjoint, and hence 
closed, operator with D(S) = D(T) = L. It only 

remains to show that R(S) is dense in L. Since R(S) = 
R(T*) it suffices to show that R(T*) is dense. This is 
clearly the case because if (y, T*x) = 0 for all 
x E D(T*) = L, then (Ty, x) = 0 for all x E L. Thus 
Ty = 0 and hence y = T-ITy = T-10 = 0 which 
concludes the proof. 

Thus it has been established that T E Sp(L) is 
unitarily implementable in the conventional representa­
tion if and only if it satisfies the new condition of 
Theorem 2.1. Indeed, precisely the same condition 
has been established by Shale3 employing a lengthier 
but more sophisticated and far-reaching analysis. 
However, it is desirable to modify the criterion 
slightly so that it is more easily applicable to the 
situations arising in the sections to follow. There, L 
is represented as the direct sum of two Hilbert spaces 
and hence the operators on L will be 2 x 2 matrices 
with operator valued entries. It would facilitate 

12 This is essentially the condition given by Seidman." 
13 T. I. Seidman, Commun. Pure App!. Math. 17,493 (1964). 
,. c.r. J. Dieudonne, Foundations of Modern Analysis (Academic 

Press Inc., 1960), pp. 315 and 316. 

matters if the difficulty of taking the square root of 
such transformations could be eliminated, for which 
purpose we give the following: 

Lemma 2.2. If T is a bounded linear operator on L, 
then (T*T)! - I is Hilbert-Schmidt if and only if 
T*T - / is Hilbert-Schmidt. 

Proof 0 ::::;; (T*T}~ ::::;; 1/ TIl / < 00 since Tis bounded. 
Therefore /::::;; (T*T)! + /::::;; (II TIl + 1)/ < 00. Thus 
[(T*T)! + /]-1 exists as a bounded operator onL. Now 
by the operational calculus T*T - / = [(T*T)! -
/][(T*T)! + I]. The conclusion now follows immedi­
ately from the facts that (T*T)! + / is a bounded 
operator with a bounded inverse and that AB and 
BA are Hilbert-Schmidt if B is bounded and A is 
Hilbert-Schmidt. 

Thus Theorem 2.1, Lemma 2.2, and the intervening 
discussion give the following: 

Corollary 2.3. T E Sp(L) is unitarily implementable 
in the conventional representation if and only if T 
is a bounded linear operator with bounded inverse 
satisfying the property that T*T - / is Hilbert­
Schmidt. 

The above is the condition which is employed in the 
subsequent sections. This section is concluded with 
another easy result which will be an aid in the later 
discussions. 

Proposition 2.4. The set of operators which satisfy 
the condition in Corollary 2.3 is a multiplicative 
subgroup of Sp(L) which is closed under the taking of 
adjoints. 

Proof If TI and T2 satisfy the hypothesis then TI T2 
is bounded with bounded inverse T;:lT:;I. Also 

(T1T2)*(T1T2) = T:TiTIT2 = Ti(I + X)T2 

= TiT2 + TiXT2 = / + Y + TiXT2 

where TiTI = / + X and TiT2 = / + Y, X, Y 
Hilbert-Schmidt and hence Y + TiXT2 is Hilbert­
Schmidt. If T satisfies the hypothesis then T-l is 
bounded with bounded inverse and 

/ = (TT-I)*(TT-I) = (T-I)*T*TT-I 

= (T-I)*(I + X)T-I = (T-I)*T-l + (T-I)* XT-I. 

Thus (T-I)*T-I = / - (T-I)* XT-I where X = T*T­
/ is Hilbert-Schmidt. Clearly the identity satisfies the 
hypothesis trivially and the associative law follows 
the associativity of multiplication of operators. If 
T satisfies the hypothesis then by Theorem 2.1, 
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T = U(T*T)! where U is unitary. Thus, 

(T*)*T* = TT* = UT*TU* = U(J + X)U* 

= UU* + UXU* = J + UXU* 

and T* is bounded with bounded inverse (T-l)*. 

III. HOMOGENEOUS TIME-INDEPENDENT 
PERTURBATIONS OF .THE KLEIN-GORDON 

EQUATION 

The dynamics of a free scalar classical meson field 
is described by the Klein-Gordon equation, 

Dtp = (Ll- :t22)tp = m
2
tp, m > 0, (1) 

where tp(x, t) is a scalar function of time and space 
(the number of whose dimensions is not important 
in this section). Once one has chosen a classical 
solution space and imposed a skew form on it, the 
various associated quantum fields can be obtained by 
employing the prescription outlined in the previous 
section. Perhaps the most direct method for obtaining 
a suitable classical state space is by studying Eq. (1) 
in its abstract vector-valued form. In vector form, 
Eq. (1) can be written as 

(2) 

where B2 = m2J - Ll. In the following we only 
demand that B2 is self-adjoint in the space of square­
integrable functions over the region in space in which 
Eq. (1) is being studied. For example this situation 
occurs when Eq. (1) is studied on En with zero 
boundary conditions at infinity. In this case B2 will 
be the self-adjoint extension of m2J - Ll with domain 
S (the Schwartz space of rapidly decreasing functions). 
Another typical example which also will arise later 
is the case of studying (1) on the interval [0, 27T] with 
periodic boundary conditions. Here B2 is the self­
adjoint operator m2J - Ll with domain {j E L2[0, 27T]; 
J" exists, a.e.,f" E L2 andJ(O) = J(27T),f'(0) = f'(27T)}. 

Since the discussion in this section is independent 
of spatial dimensions and regions, only the common 
features of the above particular examples are used. 
For instance if m ;;::: 0, B2 is positive and hence the 
same is true for Band B! on their respective domains 
of definition. If m > 0, (B2)i = B2i has bounded 
inverses for j ;;::: 0. In fact, for the first example, 
D(Bi) is the space of functions J E L2(En) such that 
(m2 + k2);/2 times the Fourier transform ofJis square­
integrable where k 2 is the square of the distance to the 
origin in the dual of En. Clearly D(Bi) is dense in 
L2(En) for all j. For the second example it only 
suffices to observe that the complete orthonormal 

set (CONS) 

{ 

eik'" }OO 

(27T)t k=-oo 

is in DCBi) for all j and hence D(Bi) is dense in 
L2[0, 27T] for allj. 

We now take the classical solution space to the real 
Hilbert space HB obtained by completing DCBt) E8 
D(B-!) with respect to the inner product 

(tp, 1p)HB = [(::), (~:) JHo 

= (Bttpl' B!1pl)L2 + (B-!tp2' B-!1p2)L2.l5-17 

Formally, the solution of (2) is given by the propagator 
Uo(t, s) defined by 

(:)(t) = Uo(t - S)(::) 
(

COS [(t - s)B], B-
1 

sin [(t - S)B]) (tp1) (3) 
-B sin [(t - s)B), cos [(t - s)B) tp2' 

where 

is the initial data given at time s. By performing the 
relevant calculations on a dense subspace of H Band 
extending by continuity it is clear that t -- Uo(t) is a 
one-parameter group of orthogonal transformations 
on H B with infinitesimal skew-adjoint generator 

Thus, Eq. (3) defines rigorously the unique (general­
ized)1S solution of Eq. (2). 

For the purposes of quantization, in addition to the 
classical staie space H B' we must also have a skew­
symmetric form on H B' With this end in mind we 
(following Ref. 19) examine the operator 

J = (0 B-1) 

-B ° 
on Hn. 

15 This space was chosen because in the particular case of three­
space it corresponds most closely to physics in that it is the unique 
Lorentz-invariant solution space for the Klein-Gordon equation 
as can be seen by the results of Strauss." 

16 11'11 and C', .) henceforth denotes the norm and inner product in 
£2. The summands in HB are written as D[Bt] and D[B-~] where the 
inner product is that which each inherits as a subspace of H o. Since 
D[Bt] and D[B-~] are the closures of R(Bt) = DCB-i) = £2 and 
R(B-t) = D(B!), respectively, in the £2 inner product, it is clear 
that the closure is necessary in the second summand only. 

17 W. A. Strauss, Trans. Am. Math. Soc. 108, 12 (1963). 
,. By "generalized" we mean a strongly continuous solution of 

the operational integral equation associated with Eq. (2). This, of 
course, may not necessarily be a "strict" solution of Eq. (2). 

,. Roe Goodman, Ph.D. thesis, Department of Mathematics, 
Massachusetts Institute of Technology, Cambridge, Mass. (1963). 
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Lemma 3.1. J, as a transformation on HB is an 
isometry which satisfies J* = -J. 

Proof Suppose 

belongs to D(B) (f) D(B-!) which is a dense subspace 
of HB • Then 

II(~B B~)(::)tB = IIB!(B-
1

cp2)11
2 + II B-i(BcpI) II 2. 

Since 
f{J2 E D(Jri) = V, B-lf{J2 E D(B) C D(Bi), 

and 
BiB-1CP2 = B-!CP2' 

Similarly, because f{J1 E D(B) C D(B!) , BCPl E V = 
D(B-i), and B-}Bf{Jl = Blcpl' Thus 

IIJ(::)II:B = IIB-if{J211
2 
+ IIB!f{J1112 = \1(::)11:18' 

Because J preserves the norm on a dense subspace, 
J is an isometry on H B . 

In order to compute the adjoint of J, we first notice 
that since J is bounded it possesses a unique adjoint 
given by 

( 
0 (-OB)+) 

(B-l)++ 

where (-B)+ and (B-l)++ are the adjoints of the 
bounded operators - B: D [B!] - D [B-!] and B-1: 
D[B-i] - D[B!], respectively, where the meaning is 
clear from the definition of H B' Consider the second 
transformation. If cP E D(B-!) and tp E D(B) we 
have (BiB-lcp, B!tp) = (B-lcp, Btp) = (B-icp, B-!Btp). 
Thus (B-l)++ ::;, B. For the first transformation if cp E 

D(B) and tp E D(B-!) (B-iBcp, B-itp) = (Bf{J, B-ltp). 
But for tp E D(B-i) = V, B-ltp E D(B) C D(B!) 
and hence (B-iBcp, B-itp) = (B!cp, BiJrltp). Thus 
(-B)+ ::;, _B-1 and J* ::;, -J. Now -J is bounded 
on HB thus giving the equality J* = -J. 

It is clear in a similar fashion that J2 = -1 and 
J-l = -J on H B' Thus to obtain the skew-symmetric 
form A B (·,·) on HB , the real inner product is first 
complexified using J and then AB is taken to be the 
imaginary part of this complex inner product; i.e., 
AB (-,·) = -(J., ')H

B 
• (HB' AB ) as defined is the 

unique, relativistically invariant, classical, dynamical 
system associated with Eq. (1) when it is being 
considered in all of three space. For this reason we 
take it to be the classical dynamical system in the 
general case. It will playa distinguished role in all of 
the discussions to follow in that we shall attempt to 
define the propagators of the perturbed equation as 

operators on H B and then examine their unitary 
implementability in the (equivalence class of) repre­
sentations obtained by quantizing (HB' AB) relative 
to the Fock state Eo. 

Consider now the perturbed Klein-Gordon equation 

Dcp = m2cp + Kcp, (4) 

where K is a positive, bounded, linear, time-independ­
ent operator on V. In vector notation, Eq. (4) can be 
written as 

:t(;) = (_(B
20+ K) ~) (;), (5) 

where B'2 = B2 + K is a positive self-adjoint operator 
on D(B2) because K is positive and bounded. Thus B' 
is well-defined and formally the solution of Eq. (5) 
is given by means of the propagator U(t) defined by 

(;)(t) = U(t - s)(::) 
(

COS [(t - s)B'], 

= -B'sin [(t - s)B'], 

where 

B,-l sin [(t - SB']) (CPI) 
cos [(t - s)B']) f{J2' 

(6) 

is the initial data at time s. The boundedness and 
linearity of K ensures20 that Eq. (6) gives the unique 
global (generalized) solution of Eq. (5) in H B' 

We now consider the main problem: that of deter­
mining whether the transformations Uo(t) and U(t) 
are unitarily implementable in the conventional 
representation. As expected, Uo(t) is clearly unitarily 
implementable because Uo(t) is orthogonal and hence 
is bounded with bounded inverse ut(t) and thus 
ut(t)Uo(t) - 1= O. Hence the criterion established 
in Corollary 2.3 is trivially satisfied. It is straight­
forward to check that Uo(t) is symplectic on (H B' An). 

In attempting to apply the criterion to the trans­
formation U(t), one is led very quickly to computa­
tional problems arising from the unboundedness of ~ 
and the noncommutativity of ~ and K. For this 
reason it seems more advantageous to abandon the 
direct approach in favor of treating the problem in a 
series of steps. The main result which we prove is the 
following: 

Theorem 3.2. The dynamical propagators U(t) of 
the perturbed Klein-Gordon equation Df{J = m2 cp + 
Kcp, where K is a positive, linear, bounded, time­
independent operator on V, are unitarily implement­
able in the conventional representation of (HIJ , An) 

20 I. E. Segal, Ann. Math. 78, 339 (1963). 
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if ,B-tB'B-! - ] is Hilbert-Schmidt as an operator shown that 
from V into V. 

-1 _ (B'-iBi 0) 
First consider the transformation 

(
,B-! 0 ) (B'! 0) 

A = 0 B! 0 B'-! 

Lemma 3.3. A is a bounded linear transformation 
on H B with a bounded inverse. 

Proof First we investigate some general properties 
of B2 and B'2 and their roots. In general if P and Q are 
(unbounded) self-adjoint operators such that 0 ~ 
P ~ Q, then 0 ~ (P)! ~ (Q)! whether they commute or 
not. In our case 0 < B2 ~ B'2 ~ B2 + IIKII ] on the 
common domain D(B2) of these operator where 11·11 
denotes the operator norm of a transformation on L2. 
Thus 0 < B ~ B' ~ (B2 + IIKII I)! on the common 
domain of these operators. In addition 0 < B2 + 
IIKII ] ~ B2 + 2 (IIKII)!B + IIKII] on D(B2). Thus 
o < B ~ B' ~ (B2 + IIKII I)! ~ B + (1IKII)i] on the 
common domains of these operators. That their 
domains are the same follows directly from a result 
of Heinz2l ; namely, if R, S are positive operators with 
D(S) c D(R) and IIRxl1 ~ IISxl1 for all x E D(S), 
then IIR8xli ~ IIS8xll for all x E D(S8), where 0 ~ 
() ~ 1. Thus the last inequality holds on D(B) = 
D(B'). Similarly we can obtain that 0 ~ Bi ~ B'i ~ 
Bi + IIKllt I on D(B'i) = D(Bi). 

Now A is bounded on HB if and only if B-~B'!: 
D[B!]--D[Bi] and B!B'-i:D[B-i] __ D[B-i] are 
both bounded. Now for q; E D(B) a dense subset of 
D(Bi) we have IIBi(B-iB'~q;)112 = IIB'~q;1I2 = (B' q;, q;) 
~ ([B + (1IKII)iI]q;, q;) ~ CK(Bq;, q;) = CK IIB!q;112. 
The existence of such a finite C K arises from the fact 
that B ~ mI> 0 and (IIKII)! is finite. Thus on the 
dense domain, D(B), the operator norm of B-!B'!: 
D[B!] -- D[Bi] is bounded by (CK )! < 00 and hence 
the operator is bounded. Likewise for q; E D(B-i), 
IIB-iBiB'-iq;112 = IIB'-iq;11 2 since R(B'-i) = D(B'i) = 
D(B~) and B-iBi is the identity on D(B!). Now 
formally B' ~ B implies that B-iB'B-! ~ I and hence 
(B-iB'B-i)-l ~ ]. Thus BiB'-lBi = (B-iB'B-i)-l ~ 
I and hence B'-l = B-i(BiB'-lBi)B-! ~ B-i/B-! = 
B-1. By rigorizing these computations, we obtain 

lI,B-i(Bi B'-i q;) 112 

= (B'-lq;, q;) ~ (B-lq;, q;) = II B-iq; II 2. 

Thus A is bounded on H B and similarly it can be 

21 Cf. L..Nirenberg, Functional Analysis (New York University 
Lecture Notes 1961), p. 123. 

A - 0 B'!,B-i 

is a bounded operator on H B . 

Lemma 3.4. A is a symplectic transformation on 
(HB' An)· 

Proof The bounded transformation A is symplectic 
if and only if it preserves the skew form AB ; i.e., 

AB(Au, Av) = -(JAu, AV)H
B 

= -(Ju, V)H
B 

= AB(u, v) 

for all u, v E H B. This is equivalent to the condition 
that (the adjoint of A in HB) A* = JA-lJ-l. Now 
since A is bounded on H B, A * exists as a bounded 
operator on H Band 

A * _ (B-iB'i)+ 0 ) 
- 0 (BiB'-!)++ ' 

where (B-iB'i)+ and (BiB'-i)++ are the unique 
adjoints of the bounded operators B-iB'i: D[Bi] __ 
D[Bi] and BiB'-i:D[B-~] __ D[B-!], respectively. 
For q; E D(Bi) and 1p E D(B'iBi) = D(B), 

(BiB-iB'iq;, Bi1p) = (B'iq;, Bi1p) = (q;, B'iBi1p) 

= (q;, BB-lB'iBhp) = (Biq;, Bi,B-lB'iBi1p). 

Thus (B-iB'i)+ :;:) B-lB'iBi. Similarly for q;, 1p E V, 

(B-iBiB'-iq;, B-!1p) = (B'-iq;, B-!1p) 

= (q;, B'-!B-i1p) = (q;, B-lBB'-!B-i1p) 

= (,B-iq;, B-iBB'-i,B-i1p). 

Thus (BiB'-i)++ :;:) BB'-!B-i and hence A * :;:) JA-lj-I. 
But both are bounded and hence equality holds. 

The methods of Lemma 3.4 can be used to show 
that the bounded invertible transformation U(t) is 
likewise symplectic on (H B' AB). Since the symplectic 
transformations form a group all compositions of A 
and U(t) and their inverses which are considered 
below will be bounded, invertible symplectic trans­
formations. 

Before returning to the mainstream of the proof of 
Theorem 3.2 we introduce some notions which 
greatly facilitate the analytic nature of our next 
discussion. Following Shale3 we say that two pure 
regular states, E and F, are relatively normalizable, 
E f""-.I F, if F(X) = E( y* XY) for all X and some fixed 
Y E \,).22.23 It is an immediate consequence of the 

22 In the case of pure regular states this definition is equivalent 
to the more general definition for arbitrary states given by Segal23 

via a theorem of Kadison. For the details see Ref. 3, p. 163. 
23 I. E. Segal, Can. J. Math. 13, I (1961). 



                                                                                                                                    

392 JOHN M. CHADAM 

definition that "(" •• !' is an equivalence relation and that 
for two pure regular states, E, F, E,...., F, with T E 

Sp(L) then ()*(T)E,...., ()*(T)F. The result of Shale, 
which provides the connection between these concepts 
and our main problem, is the following: T E Sp(L) 
is unitarily implementable in the representations 
associated with a pure regular state E if and only if 
E,...., ()*(T)E.24 Now, using the above ideas and the 
previously mentioned fact that ()* is multiplicative, we 
shall determine preliminary conditions which will 
ensure that U(t) is unitarily implementable in the 
representations associated with the pure regular 
Fock-Cook state Eo. 

By the last result, since U(t) E Sp(HB' A B), it is 
unitarily implementable in the Fock representation if 
and only if Eo""" ()* [U(t)]Eo. Using the transitivity 
of the equivalence relation ",....,", it is clear that for 
Eo""" ()* [U(t)]Eo it is sufficient (but not necessary) that 
all of the following are true: (a) Eo""" ()*(A)Eo, (b) 
()*(A)Eo""" ()*[U(t)A]Eo and (c) ()*[U(t)A]Eo'"" 0* 
[U(t)]Eo. Since AESp[HB,AB] condition (a) is 
equivalent to A being unitarily implementable in the 
Fock representation. By Corollary 2.3., since A is 
bounded with a bounded inverse on H B' this is 
equivalent to A * A - I being Hilbert-Schmidt as an 
operator on H B' Since Eo is a pure regular state and 
A, U(t) E Sp(HB' A B) [and hence AU E Sp(HB' A B)], 
()*(A)Eo and ()*(U(t)A)Eo are pure regular states.25 

Thus, by the result quoted in the last paragraph, since 
A-I E Sp(HB' A B) also, condition (b) is equivalent to 
()*(A-l)[()*(A)Eo] ,...., ()*(A-l){() * [U(t)A]Eo}. But, as 
previously mentioned, ()*(-) is multiplicative. Thus 
condition (b) is equivalent to Eo""" ()*[A-IU(t)A]Eo 

[A U(t)A-1]*[AU(t)A-1] = A-1* U(t)* A * A U(t)A-1 

which is equivalent to [A-IU(t)A]*[A-IU(t)A] - I 
being Hilbert-Schmidt on H B' Finally, since 

()*[U(t)A]Eo and ()*[U(t)]Eo 

are pure regular states and U(t)-1 = U( -t) is sym­
plectic, condition (c) is equivalent to 

()* [U(t)-I]{() * [U(t)A]Eo} ,...., ()* [U(t)-I]{() * [U(t)]Eo} 

or equivalently, ()*(A)Eo""" Eo, since ()*O is multi­
plicative. Using the symmetry of the equivalence 
relation ",....,", we find that condition (c) is precisely 
the condition that Eo""" () * (A)Eo or that A * A - I 
is Hilbert-Schmidt on HB . 

Summarizing the above discussion, it is clear that 
U(t) is unitarily implementable in the Fock representa­
tion if 

(i) A*A - IE'i:.(HB)26 
(ii) (A-IU(t)A)*(A-IU(t)A) - IE 'i:.(HB). 

These provisional conditions are now examined to 
obtain equivalent conditions on the perturbation K. 
In this respect the second condition is vacuous and 
hence motivates the above approach. More explicitly 
condition (ii) holds for all t if and only if 

[AU(t)-IA-1]*[AU(t)-lA] - IE 'i:.(HB) 

by proposition 2.4, or equivalently, since U(t)-1 = 
U( -t), if and only if [AU(t)A-1]*[AU(t)A-l] - IE 
'i:.(HB) for all t. That this is always the case (i.e., 
independent of K) follows from 

Lemma 3.5. [AU(t)A-1]*[AU(t)A-1] - 1=0. 

Proof On a suitable dense subspace of H B the 
following formal computations will be valid. Using the 
results of Lemma 3.4 to compute adjoints on HB , 

(
B-lB'-!B 0) (B-1 cos (tB')B, _B-1 sin (tB')B'B-1) (B-1B'!B! 0) 

= 0 BfB'!B-1 BB'-l sin (tB')B, B cos (tB')B-l 0 BB'-!B-! 

(B-~-B'! 0) ( cos (tB') B,-1 sin (tB'») (B'-!B! 0) 
. 0 B!B'-! -B' sin (tB') cos (tB') 0 B'!B-! 

(

B-1 COS2 (tB')Bt + B-! sin2 (tB')Bt, B-tB'-![gin (tB') cos (tB') - sin (tB') cos (tB')]B'!B-!) 

= BfB't[sin (tB') cos (tB') 

- sin (tB') cos (tB')]B'-tBl, BtB'-![sin2 (tB') + cos2 (tB')]B'tB-! 

= (~ ~). 
Thus the operator agrees with the identity on a 
dense subspace and hence is the identity. 

From Lemma 3.5 we conclude that condition (i) 
alone is sufficient for U(t) to be unitarily implement-

•• Cf. Ref. 3, p. 163, Theorem 6.1. 
25 For T E Sp(L), ()O(T) leaves the set of pure regular states in­

variant. 

able. The next two lemmas show that this condition 
is precisely that given in Theorem 3.2. 

Lemma 3.6. A*A - IE'i:.(HB ) if and only if 
B-!B'B-! - IE 'i:.(V) and B!B'-lB! - IE 'i:.(V) . 

.6 L,(H) denotes the class of Hilbert-Schmidt operators on the 
Hilbert space H. 
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Proof Using the results of Lemma 3.4, 

A*A = (n-IB'tBi 0) (B-iB'i 0) 
o BB'-!n-i 0 BiB'-i 

= (B-IB' 0). 
o BB'-l 

Then, by definition, 

A*A_I=(B-IBO'-I 0 ) :1:(H) 
BB'-l _ 1 E B, 

if and only if 

:1:1l IIBi(n-IB' - I)e1l 1l 2 

+ :1: v IIn-i(BB'-1 - 1)/v1l 2 < 00, 

where {ell} and {I,} are any CONB in D[Bi] and 
D[B-i], respectively. Notice, in particular that one 
may take {ell} c D(Bi) and {f.} c D(n-i ) and that 
B-iBi = 1 on D(Bi) and Bin-i = 1 on D(B-i). 
Hence the last statement can be written as 

:1:1l IIBi(B-IB' -l)B-iBieIl 1l 2 

+ :1: )1 B-i(BB'-I)BiB-i/v II 2 < 00' 

Because {ell} and {J.} are CONB in D[Bi] and 
D{B-i] respectively {Btell } and {B-if'} are CONB in 
£2. Consider the first pair. The fact that {ell} is an 
orthonormal set in D[Bt] if and only if {Biell} is 
orthonormal in £2 follows from (Biell , Biell,) = (jllll" 
As for the completeness, suppose {ell} is complete in 
D[Bi] and /E £2 such that (j, Biell) = 0 for all ft. 
Then, because BiB-i = Ion £2, (j, Biell) = (BiB-if 
Biell) = 0 which implies that B-if = 0 since {ell} 
is complete in D[Bi]. Thus / = BiB-if = 0 giving 
the completeness of {Biell } in £2. Conversely, suppose 
{Bte,.} is complete in £2 and/is an element of D[Bt] 
[i.e., /E D(Bi)] such that (Bil, Bie,.) = 0 for all ft. 
The completeness of {Bie,.} in £2 implies Btl = 0 
which in turn implies / = 0 since Bi is positive 
definite. As for the second part of the claim let us 
define U = B-i: D(B-i) -+ £2 as a transformation 
from D[B-i] into £2 with the usual inner product 
with D(U) = D(B-i) a dense subspace of D[B-i] 
(with HB inner product) into R(U) = R(B-i) = 
D(Bi) a dense subspace of £2 (with the usual inner 
product). Thus for 

qJI' qJ2 E D(U) = D(B-i), 

(UqJI' UqJ2) = (B-iqJI' B-iqJ2) == (qJI' qJ2)H
B

' 

Thus U is a transformation with dense domain and 
dense range and preserves inner products. Hence U 
can be extended to an orthogonal transformation 
O:D[n-i ]-+£2 and O(/v) = n-i/v' But orthogonal 
transformations take a CONB into a CONB. Hence 
{fv} is a CONB in D[B-l] if and only if {B-i/v} is a 
CONB in £2. 

Because both terms in the summation written above 
are positive, it is precisely the statement that 

Bi(n-IB' - I)B-i = B-iB'B-i - IE :1:(£2),27 
and 

B-i(BB'-1 - I)~ = BiB'-IBi - IE :1:(£2),27 

which completes the proof. 

In fact the conditions in the previous lemma can be 
reduced to the single requirement stated in Theorem 
3.2. 

Lemma 3.7. B-tB'B-i - IE :1:(£2) if and only if 
BiB'-1 Bi - IE :1:(£2). 

Proof We first check that B'in-i : L2 -+ L2 is a 
bounded operator with bounded inverse. Suppose 
qJ E D(Bi) then IIB'iB-iqJII2 = (B'iB-iqJ, B'iB-iqJ) = 
(B'B-iqJ, B-iqJ). Now B' ::::;; B + IIKlli Ion D(B) and 
n-iqJ E D(B). Hence 

II B'iB-iqJ II 2 ::::;; ([B + IIKlli I]B-iqJ, B-iqJ) 

= (B-iBB-iqJ, qJ) + IIKlli (B-IqJ, qJ) ::::;; IIqJII2 
+ (IIKlli/m) IIqJII2 = [1 + IIKlli/m] IIqJ1I2. 

Thus B'iB-i is bounded by [1 + IIKlli/m]i on the 
dense subspace D(Bl) of £2 and hence by continuity 
on all of L2. Now since both B'i and B-i are positive 
definite (hence one-one), the inverse of B'iB-i exists 
on R(B'i) = D(B'-i) = £2. Clearly the inverse is 
BiB'-i whose boundedness can be established by 
essentially the same type of argument. Then by 
Proposition 2.4, 

B-iB'n-i - 1= (B'iB-l)*(B'in-i ) - IE :1:(L2) 
and 

BiB'-IBf - 1= «B'tB-i)-l*)*«B'in-i)-l*) 

- IE :1:(£2) 
are equivalent conditions. 

By combining Lemmas 3.3-3.7 and the intervening 
discussions, it is clear that the desired conclusion of 
Theorem 3.2 has been established. It should be pointed 
out that all of the conditions on the perturbation K 
mentioned in the hypotheses of Theorem 3.2 have been 
used and, in fact, are essential for the development of 
the argument. Indeed, the fact that K was time­
independent permits the construction of the fixed 
Hilbert space H B' and the corresponding classical 
state space (HB' , AB,). Then the result in Lemma 3.5 
can be anticipated because the action of A-IU(t)A on 
HB is essentially the same as that of U(t) on H B, 
which is orthogonal. Hence the quantizations x-+ 
Wo(U(t)x), x E (HB' , A B,) are unitarily equivalent to 

27 The equality of these operators follows from the fact that they 
are bounded and agree on the common dense domain D(Bi). 
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x -- Wo(x), x E (HB , , A B .). Thus the problem reduces 
to showing that the Fock-Cook representation of 
(HB' , AB·) and (HB' A B) are unitarily equivalent 
which is the condition that A * A - J E 'J:.(H B) since A 
essentially takes (HB' AB) into (HB., AB.). Clearly 
the case of time-dependent homogeneous perturba­
tions will require a much different analysis. The 
consideration of equations of this type as well as the 
more general equation Dg.> = m2g.> + f(t, g.» are 
reserved for a later report. However, preliminary 
investigations indicate that for the equation Dg.> = 
m2g.> + Kg.> + f(t, x) where K is as in Theorem 3.2 and 
f is real-valued, the dynamical propagator (when it 
exists as a bounded operator on H B) is unitarily 
implementable in the Fock representation c;>f (HB' AB) 
if the same is true for the propagators of Dg.> = 
m2g.> + Kg.> and Dg.> = m2g.> + f(t, x). The last con­
dition is that IIB-lj(t,) II is locally summable as a 
function of t. 

IV. EXAMPLES 

In the last section the main problem was reduced 
to the (nontrivial) problem in linear analysis of 
determining for which K is B-tB'B-! - J E 'J:.(£2). 
We now examine the dependence of this condition 
on the type of spatial region and its dimension. The 
particular example of a bounded region in one 
dimension to be considered is the interval [0,27T] 
where, as previously mentioned, B2 = m2J - Ll is 
self-adjoint when we take as its domain {f E £2 [0, 27T]; 
f" exists, a.e., f" E £2[0, 27T], f(O) = f'(27T) , f' (0) = 
f'(27T)}. For the unbounded region our prototypical 
example will be the spatial region consisting of the 
whole real line, with B2 being the self-adjoint extension 
of m2J - Ll with domain S (i.e., with zero boundary 
conditions at infinity). For higher dimensions the 
regions will be taken to be the Cartesian product of the 
above with B2 defined analogously so that it is self­
adjoint as an operator on the Hilbert space of square 
integrable functions over the region. The investigation 
is divided into two subsections, the commutative and 
noncommutative case, in which the perturbation K 
does or does not commute with B2, respectively. 

A. Commutative Case 

As anticipated, when K commutes with B2 the 
criterion established in Theorem 3.2 can be modified 
to give a more amenable condition. 

Theorem 4.1. For K as in Theorem 3.2 which 
commutes with B2, the conditions B-IB'.o-! - IE 
'J:.(£2) and B-IKB-l E 'J:.(£2) are equivalent.28 

18 Notice that again the spatial region and its dimension are left 
unspecified to emphasize that Theorem 4.1, as Theorem 3.2, is 
independent of these features. 

Proof As in Lemma 3.7, B'I.o-2 is a bounded opera­
tor on £2 with bounded inverse BtB'-t. Thus, by 
Proposition 2.4, 

B-tB'B-t - J = (B'IB-t)*(B't.o-t) - IE 'J:.(L2) 

and 

are equivalent statements. But 

([B'IB-t]2) * [B'tB-t]2 - J 

= B-IB'2B-l - J = B-IKB-l, 

since K commutes with B2 (and hence with all func­
tions of B2). 

Theorem 4.2. Suppose On is the n-fold Cartesian 
product of [0, 27T] and K is a bounded linear positive, 
time-independent operator on L2(On) which commutes 
with B2. Then the dynamical propagators of the 
equation Dg.> = m2g.> + Kg.> defined on On with 
periodic boundary conditions, are unitarily imple­
men table in the conventional representation of 
(HB' A B) ifn ~ 3. 

Proof Clearly this is precisely the situation for 
which Theorem 4.1 was designed. Thus B-IJ(B-l = 
KB-2 E 'J:.(£2(On» is a sufficient condition for the 
propagators to be unitarily implementable. Since K is 
bounded, it is sufficient that B-2 E 'J:.[£2(0 .. )]. Now 

{

ei(kl:l:l+k2:1:2+" • +kn:l:n)} 00 

(27Tt/2 kl' kl.···. k .. =-oo 

is a CONB for £2(0 .. ). Hence .0-2 E 'J:.[£2(0 .. )] if and 
only if 

i 11.0-2 ei(kl:l:l+' '~~kn:l:n) 112 
kl.k2 • ...• kn=-OO (27T) 

00 1 
= l 2 2 2 2 2 < 00. 

ktok.,·· ',kn=-oo (k1 + k2 + ... + k n + m) 

The conclusion is then an immediate consequence of 
the following lemma (i.e., the last sum converges for 
all n such thatp = 2 > !n or n ~ 3). 

Lemma 4.3. If 

m¢O, 
00 1 
l (k2 k2 + k2 + 2)" < 00 kl,k2'" ·,k .. =-oo 1 + 2 + . . . .. m 

if and only if p > In. 
Outline of the Proof By applying the integral test to 

each successive summation it is not difficult to check 
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that 

2" ... f
OO foo d"x 

On times 0 (X2 + m2)1' 
00 1 

::;; L (k2 k2 k2 2)1> 
k"kz' ... ,kn=-oo 1 + 2 + . .. " + m 

::;; 2
n[m12P + k~ C ~ k)i:t~~e~iOO(X2 ~:2)pl 

Thus it is clear that a necessary and sufficient condition 
for the sum to converge is that the n-dimensional 
integral 

LOO ... ioo

(x2 ~:2)P 
be finite. But this integral can be written as 

100 rn-1 dr 
Cn 

o (r2 + m2)P 

where C" is a finite constant related to the surface 
area of the unit sphere in n dimensions. The last in­
tegral clearly converges if and only if 2p - (n - 1) > 
1 or equivalently p > in. 

Suppose K = m'2/, which commutes with B2. This 
would correspond to a cut-off theory for the subjection 
of a free meson to a mass jump m' at some finite time. 
Theorem 4.2 then says that the dynamics of this 
interaction can be completely carried out in the Pock 
representation. However, for the noncutoff theory 
this situation never prevails regardless of the number 
of dimensions. This will be a direct consequence of 
the next general result. 

Theorem 4.4. If K commutes with B2 as well as 
satisfying the hypotheses of Theorem 3.2, then a 
necessary and sufficient condition for the dynamical 
propagator U(t) of Dtp = m2tp + Ktp to be unitarily 
implementable in the conventional representation of 
(HB' AB) is that KB-2 sin (tB') E :E(L2). 

Proof By Corollary 2.3, U(t) is unitarily imple­
mentable if and only if U(t)*U(t) - IE :E(HB). 
Now U(t) is bounded with a bounded inverse U( -t). 
Thus U(t)*U(t) - IE :E(HB) if and only if U*(t) -
U(t)-l E :E(HB ). Using the facts that U(t)* = 
JU(t)-lj-1 = JU( -t)J-1 [since U(t) is symplectic] 
and that B2 and B'2 commute, we find that 

U(t)* _ ( cos (tB'), 
B2B'-2B' sin (tB'), 

and 

U(t)-l = ( cos (tB'), 
. B' sin (tB') 

-B-2B'2B'-1 sin (tB'») 
cos (tB') 

-B'-l sin (tB'») 
cos (tB') 

Thus 

U(t)* - U(t)-l = 

( 
0 (I - B-2B'2)B'-1 sin (tB'») 

(B2B'-2 - I)B' sin (tB'), 0 

As a result U(t)* - U(t)-1 E :E(HB) if and only if 

:E" IIB!(I - B-2B'2)B'-1 sin (tB')!,,11 2 

+ :Eu IIB-!(B2B'-2 - I)B' sin (tB')eu I1 2 < 00 

for arbitrary CONB {e) and {j,,} in D[B!] and 
D[B-!], respectively. As in Lemma 3.6 this is equiv­
alent to the two conditions 

B!(I - B-2B'2)B'-1 sin (tB')B! E :E(V) 
and 

B-!(B2B'-2 - I)B' sin (tB')B-! E :E(V). 

The first term, 

B!(I - B-2B'2)B'-lBi sin (tB') = -BB'-lKB2 sin (tB') 

= -KB-1B'-1 sin (tB') 
while the second 

B-1B'(B2B'-2 - I) sin (tB') 

- = B-1B'-lB'2(B2B'-2 - I) sin (tB') 

= -B-1B'-1K sin (tB'). 

Thus U(t) is unitarily implementable if and only if 
-B-1B'-lK sin (tB') E :E(V) or equivalently 

B-1B'-lK sin (tB') E :E(V). 

However, B-1 B' is bounded with bounded inverse 
on V. Thus the necessary and sufficient condition 
reduces to 

B-1B'B-1B'-lK sin (tB') = B-2K sin (tB') E :E(V). 

Corollary 4.5. The dynamical propagators arising 
from the perturbed Klein-Gordon equation Dtp = 
m2tp + m'2tp, m' > 0, defined on all of En with zero 
boundary conditions at infinity, are not unitarily 
implementable in the free field representation associa­
ted with the mass m regardless of the number of 
dimensions. 

Proof By Theorem 4.4, the necessary and sufficient 
condition for the unitary implementability of the 
propagators is that m'2B-2 sin (tB') E :E[V(En)]. But 

!Fm'2B-2 sin (tB')!F-1 = m'2(m2 + k~ + ... + k~)-l 
X sin [t(k~ + k~ + ... + k~ + m2 + m'2)!] 

where !F is the n-dimensional Fourier transform. 
Thus m'2B-2 sin (tB') is unitarily equivalent to 
multiplication by the above function since !F is 
unitary on V(E"). But a multiplication operator has 
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continuous spectrum and unitarily equivalent opera­
tors have the same spectrum. Hence m'2B-2 sin (tB') 
has continuous spectrum which precludes its being 
Hilbert-Schmidt regardless of the dimension. 

The last result points out the extreme difficulty of 
being able to view the dynamics of an interaction on 
the free representation of the non interacting field. It 
also suggests the necessity of a rapid decrease to zero 
at infinity for the (non-commutative) potential 
scattering case [i.e., K = M" v = v(x1 ••• xn)]. 

In concluding this subsection, it might also be 
pointed out that in the commutative case the sufficient 
condition of Theorem 3.2 is easily deduced from the 
necessary and sufficient condition of Theorem 4.4 by 
using the boundedness of sin (tB') and Theorem 4.l. 
The close similarity of the necessary and the sufficient 
condition in this particular case seems to indicate that 
a better sufficient condition than that given in Theorem 
3.2 is not, in general, available. 

B. Noncommutative Case 

In this first stage of the investigation of the condition 
given in Theorem 3.2, we must restrict our attention 
to the bounded, one-dimensional situation in order 
to find a noncommutative example for which the 
dynamical propagators are unitarily implementable. 
More explicitly, 

Theorem 4.6. Suppose K is any bounded, linear, 
positive, time-independent operator on V[0,27T]. 
Then the dynamical propagators of Orp = m2rp + Krp 
(valid for x E [0, 27T], with periodic boundary con­
ditions) are unitarily implementable in the conven­
tional representation of (HB' AB). 

Proof Suppose the number of spatial dimensions is 
left arbitrary. The argument will be based on the 
analog of the generalized HOlder theorem for non­
commutative 0 P spaces. T E $(H) is in 0 p if 
Tr (I TIP) < 00 where I TI = (T* T)i and Tr is the usual 
trace of an operator. The result of interest is that if 
Tl E Op and T2 E OQ then TIT2 E Or where lip + 
Ilq = llr for ° < r < 00.

29 Clearly 02(H) = '£.(H). 
By the above result, to show that ]J-!B']J-t - I = 

B-t(B' - B)B-t E '£.[L2(iln)] it suffices to show that 

B-t E 04[V(iln)] 

and 
B' - BE $[V(iln)] = 0 00 [£2(iln)]. 

For then B-!(B' - B)]J-i E Op for lip = ! + ° + 
! = tor p = 2. Now on D(B), 0< B:::;; B' :::;; B + 

•• cr. N. Dunford and J. T. Schwartz, Linear Operators, Part II 
(Interscience Publishers, Inc., New York, 1963), p. 1093. 

(1IKII)i I or 0:::;; B' - B :::;; (1IKII)il. But D(B) is 
dense in V(il n ), hence B' - B is a bounded operator 
V(il n ). Also, since]J-i is self-adjoint, IB-il = B-! and 

Tr (lB-t I4) = Tr (B-2) = Tr [(B2)-1]. 

Using the CONB 

{

eiklZl+' .. +knZn} 00 

(27T)n/2 kl,k2'" . • kn=-oo 

it is clear that B-t E 0 4 if and only if 

Tr [(B2rl] 

By Lemma 4.3 this sum converges if and only if 
in < I or n = I. 

Thus the above result gives an example of a non­
commutative situation which satisfies the conditions 
of Theorem 3.2. However, it also points out the 
difficulties which would arise in attempting to apply 
this straightforward approach to more natural cases 
such as bounded and unbounded spatial regions in 
three dimensions. The above proof has already 
demonstrated that B-i E 04[£2(iln)] only if n = 1. 
As for the unbounded region, regardless of the 
dimension, B2 and hence B-i has continuous spectrum 
and therefore B-t E 0 p only for p = 00. But, by 
proposition 2.4 B-tB' B-i - I = B-i(B' - B)]J-i E 

'£.(£2) if and only if 

B'-iBB'-i - 1= B'-i(B - B')B'-i E '£.(L2). 

Thus, the above predicament may be avoided by 
inquiring instead whether B'-l E OiV). This tact 
may be profitable in the higher dimensional bounded 
case with K = M" (i.e., potential scattering). However, 
it seems unlikely that much can be gained from this 
approach in the unbounded case since it can be shown 
by a result of Kuroda30 that for K = M~, v E 

V(En) (J V(En), n:::;; 3, the absolutely continuous 
parts of the operators B'2 ~nd B2 are unitarily equiv­
alent. Thus the spectrum of B'2 and hence B'-i is 
continuous which precludes B'-i E 0 4 , It seems 
inevitable then that a more careful examination of 
B' - B is needed in order to establish conditions 
insuring that it is in 0 p' p < 00. These problems, as 
well as necessary conditions for the noncommutative 
case will be considered in later work. We also hope 
that the results stated here will be beneficial in 
indicating approaches to sirtiilar considerations for 
time-dependent and nonlinear perturbations. 

30 S. T. Kuroda, J. Math. Soc. Japan 11, 247 (1959); Nuovo 
Cimento 12,431 (1959). 
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Several identities satisfied by the 9j symbols or by the product of 6j and 9j symbols are derived by 
means of the symmetry properties of the Mobius strip type 15j symbol; in particular, the identity 

(

a d g](a j m] d b f . (X d m](x j g] 
b e ~ b k n = ~ (2x + 1)(2y + 1)(2z + 1) {: j !}{y : :}{: I ;} yen y k ~. 
cflclp zfpz I 

The resulting recursion relations for the 9j symbols are also considered. 

I. INTRODUCTION 

By considering two different coupling schemes of 
four angular momenta, Biedenharn1 has obtained the 
identity satisfied by the Racah coefficients (we 
henceforth use the equivalent Wigner 6j symbol). In 
an analogous way, but with five angular-momenta 
coupling, Arima et af.2 have arrived at another 
relation between the 6j and 9j symbols. On the other 
hand, the problem concerned with the coupling of N 
angular momenta is generally related to the definition 
of the 3(N - l)j symbol. This suggests that, starting 
from the properties of the 3(N - l)j symbol instead of 
considering different sets of transformations from 
one specific scheme to another, one may be able to 
deduce the relations satisfied by the product of the 6j, 
the 3(N - 2)j, and consequently the 9j symbols, 
since the 3(N - 2)j symbol is always expressible in 
terms of the 6j and 9j symbols. 

Indeed, when both sides of the following symmetry 
relation of the 9j symbol 

{
a b C} {a 
d e ~ = (_1)8 g 

g hId 

b C) 
h i 

e f 

(where S is the sum of all the nine arguments) are 
multiplied by the quantity 

and a summation is then carried out over the argument 
C, one can readily obtain the Biedenharn identity. 

1 L. C. Biedenharn, J. Math. and Phys. 31, 287 (1953). 
2 A. Arima, H. Horie, and Y. Tanabe, Progr. Theoret. Phys. 

(Kyoto) 11, 143 (1954). 

Thus, 

(_1)2k{~ ~ ~}{! ~ ;} 
= I (_1)8+k+C+X(2x + 1)(2c + 1) 

xc 

{a i k}{a b C}{a ~ f~} 
XbfXifX!e 

= I ( _1)R+x+2a+2i(2x + 1) 
x 

X {a i k}{g h i}{d e f}, (1) 
bfxbxexag 

where R = S - C + k and use was made of the 
orthogonality condition and the sum rule (Racah's 
back-coupling rule) for the 6j symbols. 

The subject of this note is, therefore, to deduce 
the corresponding identity and other related formulas 
for the 9j symbols using the symmetry properties of 
the 3(6 - l)j symbol and also to derive the resulting 
recursion relations. It is noted that one can equally 
obtain the desired relations by means of the different 
coupling schemes without relying on the known 
relationships for the 6j and 9j symbols, but this 
procedure is not advantageous when the number of 
coupled angular momenta is large, since it is not 
always straightforward to express the transformation 
matrices of the eigenfunctions of N coupled angular 
momenta in terms of known simpler matrices.3 

8 See, for example, A. P. Yutsis,l. B. Levinson, and V. V. Vanagas, 
The Theory of Angular Momentum [Mathematicheskii apparat 
teorii momenta kolichestva dvizheniya, (Vilnius, USSR, (1960)], 
translated from Russian by A. Sen and A. R. Sen (Israel Program 
for Scientific Translation, Jerusalem, Israel, 1962). They give an 
extensive account of the transformation matrices of five angular­
momenta coupling with general consideration of the 3Nj symbols. 
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e 

FIG. I. Mobius strip which represents the triangular 
conditions of the 15j symbol. 

II. IDENTITIES 

A natural extension of the arguments on the 12j 
symbol, given by Jahn and Hope4 and Ord-Smith,5 

to the 15j symbol permits us to easily write down 
twenty symmetry relations (see Fig. 1). It is. however, 
noted that the 15j symbols are not unique and can 
also be defined differentlY' by another coupling 
manner between the fifteen arguments, and that only 
the 15j symbol which is represented by a Mobius 
strip will be considered. Among the twenty symmetry 
forms, five of them are given explicitly and it is 
remarked that the other symmetry forms reduce 
essentially to one of these when the 15j symbol is 
expressed in terms of the 9j symbols. Thus, in the 
notation of Ord-Smith,5 

{

ajbkC 

r s t 
: m : n} _ ... 

The following fundamental property of the 15j 
symbol can be readily shown by extending the results 

• H. A. Jahn and J. Hope, Phys. Rev. 93, 318 (1954). 
I R. J. Ord-Smith, Phys. Rev. 94, 1227 (1954). 
• When N is greater than four, there exist other less symmetric 

symbols besides the two 3Nj symbols represented by a Mobius 
strip and an untwisted cylindrical band, respectively (see, e.g., Ref. 
3). 

for the 12j symbol: 

{
ajbkC,dmevn} 

r stu 
= (-l)SI( _1)2Z(2z + 1) 

-~(-l).-OO+~(2x+l)(2Y+I{ j : k C x) 

X t I : m : Y} (: x C Y : n). (3) 

where S is the sum of all the fifteen arguments. It is 
noted that, for the purpose of symmetrical presenta­
tion, all the notations are expressed in those of 
Mobius strip symmetry and these notations are 
related to the Wigner 6j and 9j symbols by3 

t j : k} - W(absr;jk) - (-I>-,""'/: ! il 
and 

where W is the Racah coefficients. Other properties? 
of the 15j symbol follow from Eq. (3). 

When two of the five 15j symbols of the symmetry 
relations (2) are equated in terms of the 9j symbols, it 
is seen that there are two types of equations: one of 
the 9j symbols on each side has the same form but the 

7 The Biedenharn identity, applied to the last two 6j symbols of 
Eq. (3), yields 

~ (- I)w+z-._m-n-{ < z}C v : w}C e : +2W + I). 

Then, it is seen immediately that the summation of four 6j symbols 
over z is just the definition of the 12j symbol (see Ref. 5). Therefore, 
the 15j symbol of Eq. (3) is related to,the 12j symbol by 

L (2w + I){a / k C I d w}{a v n w}{r e n w). 
to rstu mu md 

Thus, a usefulness of the Biedenharn identity in the study of the 
3Nj symbol is demonstrated. Yutsis et al. (Ref. 3) have shown in a 
different and general manner that this kind of relation holds between 
the 3Nj and 3(N - I)j symbols. 
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other 9j symbols are different, and every six 9j 
symbols are different from each other. Explicitly, 
this can be characterized by the equation 

~ (_ly-HU-d(2x + 1)(2y + 1) 

X {: ~ :}{: ; :}{: : ~} 
= ~(_1)a-r+e-"(2x + 1)(2z + 1) 

"'. 

X {; ~ :}{: : :}{: : ~} 
= ~ (-It-u+,,-e(2p + 1)(2q + 1) 

pq 

X {: : :}{: : ~}{: ~ ~}, (4) 

where the notation of the Wigner 9j symbol is re­
introduced and the phase symmetries have not been 
taken into account. In the first part of the equation, 
the same 9j symbols on each side can be eliminated 
using the orthogonality of the 9j symbols. This 

~e;:: + I){: ~ ;} {~ ~ ;} 
'" ghi Imi 

= ~(2Y + l){: ~ ~}{7 ~ ~}, (5) 
k f J 1 a J 

which shows that the common arguments in the two 
9j symbols on one side appear only once on the other 
side. When one of the common arguments on one 
side vanishes, this equation leads to the well-known 
relation Eq. (A2). Equation (5) can be rewritten in 
the form of the sum rule: 

t : ~} -~.ra][x][y][zl 
{~ b C}{Z b y}{a j I} 

x J y f d e f d x z, (6) 

lzixhjghi 

where [a] = (2a + 1), etc. It is also possible to derive 
the analogous relations with [b], [f], or [i] in place 
of [a], but these expressions turn out to be the 
original one because of the symmetry character of 
the 9j symbols. 

A procedure for carrying out the summation on one 
side of Eq. (4) is to sum over the arguments which 

appear only once, namely over j and m first applying 
the relationship of the type (A2) on the left-hand 
side and then over sand e using the orthogonalities 
for the 6j symbols. This yields a simple product of two 
6j symbols and one 9j symbol with fifteen distinct 
arguments. Now, the problem consists essentially of 
reducing the number of summation indices on the 
other side and this can be readily effected in an 
analogous way with the derivation of the identity (1). 
Thus, the following identity with twelve distinct 
arguments is immediately obtained: 

(-1)'+>-'-' t : ~) e : :l 
=~(-1)c+l-g-"'[X][Y]e ~ ;}{~ : ~} 

XC; ;l{~ ; ~). (7) 

This identity and that of (6) were originally given by 
Arima et aJ. 2 from the transformation matrices of the 
different coupling schemes. Another process used for 
reducing the multiplicity of the sum in which the 
fifteen distinct arguments are conserved leads to 

e f}{g h i} 
kim n p {: ~ ;}e 

g h i 

= ~ [X][Y][Z]{a b C}{: ~ ~} 
"'liZ X Y z 

gnp 

{
b z ~} {C x Y} 

x e J f j k. (8) 

hpm imn 

Finally, a product of two 9j symbols which have three 
common arguments is expressed in terms of the 
multiple sum of the 6j and 9j symbols: 

{~ ; ~}{~ ~ ;} 
= ~ [X][Y][Z]{a ~ g}{b e h}{C f i} 

"'liZ X J m y k n zip 

X {; ~ :} {; ~ !}. (9) 

z f p z I I 

This identity, in a very symmetrical form, follows from 
Eq. (8) when the orthogonalities of the 9j and 6j 
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symbols with respect, for example, to the arguments 
d, g, and to the argument a, are taken into account, 
respectively, but can also be proved directly by 
reintroducing the identity into the two 9j symbols 
of the right-hand side. When one of the twelve argu­
ments which are not common on the left-hand side 
vanishes, the identity (9) reduces to that of (7) which 
in turn becomes Eq. (A2) if the arguments e or fare 
zero. 

ill. RECURSION FORMULAS 
Contrary to the cases of the 3j and 6j symbols, 

almost no account has been given for the recursion 

formulas of the 9j symbols. Because of the nine 
arguments involved, simple manageable algebraic 
expressions between 9j symbols are not available. 
In special cases, however, it is possible to derive 
some practical recursion formulas from relatively 
simple relationships for the 9j symbols and this is 
done in Appendix A. 

The general recursion relations so far as two or 
three arguments are concerned can be derived from 
the identity (9). Thus, for example, when j = k = t 
and I = 0, then p = c, x = g ± t, and y = h ± t. 
This leads to a recursion formula of the type 

{

a d g} 
(2g + 1)(2h + 1)[(S - 21u - vi a + lu + vi + v + t)(S - 21u - vi b - 21u + vi c + u + t)]l b e ~ 

c f l 

= [(d + g - u(2a + 1) + t}{a + 2u(d - g) + u + t}]l 

x (-I)"[(R + l)(R - 2'}{e + h - <>(2b + I) + 1J{b + 2* - h) +, + mi{::: ; 
+ (-I)"[(R - 2h)(R - 2. + I)(e + h + ,(2b + I) + l}{b + 2<>(h - e) + ,+ Hli{: : : 
+ [(a + d + 2u(g + 1) + l}{g + 2u(a - d) + 1}]1 

g - t} 
h-t 

i 

d g - t)) 
e h + t 
f i 

X (-I)~[(R - 2gXR - 2h + I){e + h - <>(2b + 1)+ iHb + 2,(e - h) + H !lJ1{::: ; ! ~!} 

+ (-I)"[(R + 2XR - 2, + I){e + h + ,(2b + I) + t}{b + 2<>(h - e)+, + !lJ1{::: ; !;:}). 
where the arguments u and v can take the values ±t 
independently and <51 = HI + u - v - lu + vi), <52 = 
to - u - v - lu - vI), <53 = t(l + u + v -Iu - vI), 
<54 = to - u + v - lu + vi), S = a + b + c, and 
R = g + h + i. It is noted that this formula is the 
simplest general recursion relation which can be 
deduced from the identity (9) and which does not 
contain constant arguments. Other recursion formulas 
are also derived from (9) for the following cases: 

j = k = t, I = 1, m = a ± t, n = b ± t, and p = c; 
j = k = 1,1 = 0, m = a, n = b, and p = c; 
j = k = I = 1, m = a, n = b, and p = c ± 1; etc. 

(10) 

In Appendix B, the explicit recursion formulas for 
the second case is shown. 
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APPENDIX A. SIMPLE RECURSION FORMULAS 

As was seen in the last paragraph, the general recursion relations for the 9j symbols are practically of no use 
for the real calculation of the 9j values. However, the simple practical algebraic relations are obtainable when 
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one of the arguments is a constant. One such formulas is 

s OJ 12 L. (AI) 

j2 L 

The proof of this formula is tedious and can be done, for example, by writing out explicitly the left-hand side 9j 
symbol in terms of the 6j symbols so as to contain the arguments j2 ± I, j2 and applying the recursion relation 
of the 6j symbol to the term with h + 1. 

Most of the recursion formulas among the 9j symbols which contain a constant argument can be derived from 

h . {k b f) {b {a b X) 
(_I)b+d+l+h+2k([f][h])!{! a ~} d e f = ~ [x] ~ i :} d e f , 

h hOg h i 

(A2) 

which is useful when the value of the argument i is not greater than one and the sum is thus limited to a few 
terms. Combined with the relation (AI), a recursion formula useful in the study of nuclear spectroscopy is 
obtained: 

{

s S 

[L(2L + 3)(S + 2)(S - 2jl + 1)(S - 2j2 + 1)(S - 2L)]! ~1 ~2 
h 12 

_ {S S 1) 
= (2L + 1)[jl - j2 - L + ~L(j~ + s_- /2)J 11 12 L 

11 +12-JI- /2 
jl j2 L 

+ [(L + 1)(2L - 1)(S + 1)(S - 2jl)(S - 2j2)(S - 2L + l)]!{!1 :2 
11 j2 

1 ) L , 
L-l 

(A3) 

where S = it + h + L and the convention of Biedenharn et a[.9 is introduced (i.e., L = L(L + 1), etc.). 
It is observed that this equation is indeterminate if 11 = 12 and jl = j2 or 11 = jl and 12 = j2. In this case, the 
use of the formula (AI) leads to 

[s(s + 1)(L + 1)(2L + 3)(2j + L + 2)(2j - L)]!{;; ~) 
J ] L + 1 

~ lsI' + 1)L(2L - 1)(2j + L + IX2j - L + I)]I{; : L ~ J 
+ (2L + I)[j(j + 1) + S(, + I) - /(1 + I)Jt 

S O) 
1 L. (A4) 

j L 

When s = tin Eq. (A3), the first 9j symbol on the right-hand side can be eliminated, yielding the following 

8 This relation was often quoted incorrectly in the literature: M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., 
The 3-j and 6-j Symbols (M.I.T. Press, Cambridge, Massachusetts, 1959), p. 24; A. de-Shalit and I. Talmi, Nuclear Shell Theory 
(Academic Press Inc., New York, 1963), p. 520. The formula (AI) differs from those of these references by the factor [(2s + 1)(2L + l)]F 
and also by the phase for the latter reference. 

• L. C. Biedenham, J. M. Blatt, and M. E. Rose, Rev. Mod. Phys. 24,249 (1952). 
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expression: 

1 } L = 2L+l -1 
[L + (11 - jl)(211 + 1) + (12 - j2)(212 + 1) ] 

L+l 

[
L(2L - 1)(S - 2L)(S - 2jl + 1)(S - 2j2 + 1)(S + 2)J!{; t 

X (L+ 1)(2L+ 3)(S _ 2L+ 1)(S - 2jl)(S - 2j2)(S + 1) .1 ~2 
11 12 

~ } (A5) 
L-l 

with S = jl + h + L. It is also possible to relate two 9j symbols involving the arguments L + 1 and L, respec­
tively, and this can be done by introducing the expression (A5) into (A3). 

APPENDIX B 

The second example of the general recursion formula is the case with j = k = 1, I = 0, m = a, n = b, 
and p = c in the identity (9). This yields -

I {: b:

h 

v c~; W}( -1)'" (b _ 1 + tv)(c _ 1 + tw)' A(b - v, c - w)· B(b - v)· r(c - w) = 0, 
v=O.w-=O g • 

(Bl) 
where 

A(b - v, c - w) = [(S - v)(S - v + 1)(S - 2a - v)(S - 2a - v - l)]! for v = w = 0 or 2 

with 

= [S(S - 2a - 1)(S - 2b + v)(S - 2c + w)]! for (v = 0, w = 1) or (v = 1, w = 0) 

= - [(S - 2b + v - 1)(S - 2b + v)(S - 2c + w - 1)(S - 2c + w)]! 

for (v = 0, w = 2) or (v = 2, w = 0) 

= [(S - 1)(S - 2a - 2)(S - 2b + v - 1)(S - 2c + w - I)]! 

for (v = 1, w = 2) or (v = 2, w = 1) 

= 16b(b - l)c(c - 1)[e(e + 1) + f(f + 1) - d(d + 1)] + a(a + 1) _ b(b _ 1) _ c(c _ 1) 
[B(b - 1)][r(c - 1)] 

for (v = 1, w = 1); 

B(b - v) = [(R - tv + 1)(R - 2b + tv + 1)(R - 2e - tv)(R - 2h - tv)]! for v = 0 or 2 

= 2[b(b - 1) + e(e + 1) - h(h + 1)] for v = 1; 

r(c - w) = [(T - tw + 1)(T - 2c + tw + 1)(T - 2f - tw)(T - 2i - tw)]! for w = 0 or 2 

= 2[c(c - 1) + f(f + 1) - i(i + 1)] for w = 1, 

S = a + b + c, R = b + e + hand T = c + f + i. 
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Embeddings of the Plane-Fronted Waves and Other Space-Times 

C. D. CoLLINSON 
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(Received 20 June 1967) 

The plane-fronted waves of general relativity are embedded in a six-dimensional pseudo-Euclidean 
space of signature -2. Two distinct families of embeddings are found. Embeddings of several well­
known space-times are obtained. Certain results of J. Rosen are improved. 

I. INTRODUCTION 

In a recent paper by Rosen,t several well-known 
space-times are embedded, locally and isometrically, 
in pseudo-Euclidean space. One aim of the present 
paper is to find embedding spaces of lower dimension. 
In particular, the plane-fronted gravitational waves2 •3 

are embedded systematically by analysing the Gauss­
Codazzi-Ricci4 equations. Two distinct families of 
embeddings of the plane-fronted gravitational waves 
in a six-dimensional pseudo-Euclidean space of 
signature - 2 are obtained. These embeddings are 
independent of the vacuum field equations and so 
apply to the general plane-fronted waves. 

The embedding classes of all but two of the space­
times discussed by Rosen are found (the embedding 
class of a space-time is p - 4, where p is the least 
possible dimension of the embedding space). In order 
to deduce the embedding classes of several of the 
space-times, the following theorem is used. 

Theorem 1: Solutions of the Einstein-Maxwell 
field equations can be embedded (locally and iso­
metrically) in a five-dimensional pseudo-Euclidean 
space only if the electromagnetic field and the Weyl 
tensor are both null. The proof of this theorem is 
given elsewhere.5 

Throughout this paper, Greek letters IX, p, Y, . , , 
denote tensor indices while Roman letters m, n,p, ... 
denote tetrad indices. A semicolon denotes an intrinsic 
derivative and Ymnp are the usual Ricci rotation 
coefficients.4 A space-time can be embedded locally 
and isometrically in a six-dimensional pseudo­
Euclidean space if and only if there exist two sym­
metric tensors amn , bmn , and a vector Sm satisfying 
the following equations,4.6 

Gauss equation: 

R mn7Jq = 2e1am[paq]n + 2e2bm[pbq]n' (1.1) ---
1 J. Rosen, Rev. Mod. Phys. 37, 204 (1965). 
I H. W. Brinkman, Math. Ann. 94,119 (1925). 
• W. Kundt, Z. Physik 163, 77 (1961). 
'L. P. Eisenhart, Riemannian Geometry (Princeton University 

Press, Princeton, N.J., 1925), p. 97. 
5 C. D. Collinson, Commun. Math. Phys. (to be published). 
• C. D. Collinson, J. Math. Phys. 7, 608 (1966). 

Codazzi equations: 

am[n;p] - Y[nQ7J]a mq + Y mq[nap]q = e2s[nbp]m' (1.2) 

bm[n;p] - Y[nqp]b mq + Ymq[nbp]q = -e1s[nap]m' (1.3) 

Ricci equation: 

s[m;n] - SqY[mqn] + aq[mbn]q = O. (1.4) 

In the above, Rmnpq is the curvature tensor of the 
space-time, e1 and e2 are real constants of unit 
modulus, and square brackets denote antisymmetriza­
tion. These equations are, in fact, the integrability 
conditions of the differential equations 

and 

(1.5) 

(1.6) 

'YJg", = -bpmY~p + e1sm'YJP, (1.7) 

where capital indices Q, R, ... range and sum from 
1 to 6. Here 'YJf and 'YJ~ are two vectors (in the em­
bedding space) normal to the space-time and yQ are 
coordinates in the embedding space. The normals 'YJf 
and 'YJ~ are not uniquely determined. If el = e2' a 
new set of normals can be chosen satisfying 

ijP = cos 6'YJp + sin 6'YJ~ 
and 

ij~ = sin O'YJP + cos O'YJ~. 

This induces the transformations 

and 

iimn = cos Oamn + sin Obmn , 

hmn = - sin ()amn + cos 6bmn , 

Sm = Sm - el);m' 

(1.8) 

Similarly, if el = -e2, a new set of normals can be 
chosen satisfying 

ijP = cosh O'YJP + sinh O'YJ~ 
and 

ij~ = sinh O'YJf + cosh O'YJ~ • 

This induces the transformations 

and 

iimn = cosh Oamn + sinh Obmn , 

hmn = sinh Oamn + cosh Obmn , 

(1.9) 

403 
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2. PLANE-FRONTED WAVES transformations 

The metric of the plane-fronted waves can be 
written, in terms of two real coordinates p, a, and a 
complex coordinate " in the form 

ds2 = 2 dp da - 2H da2 - 2 d, d~. (2.1) 

The conditions for a purely gravitational wave are 

oH = 02H = o. (2.2) 
op o'o~ 

These plane-fronted gravitational waves are charac­
terized by anyone of the following properties: 

i. the existence of a covariant constant vector field2 ; 

ii. type N conformal tensor with shear-free, non­
diverging raysa; 

iii. type N conformal tensor whose rays are tra­
jectories to a one-parameter group of affine collinea­
tions7 ; 

iv. Einstein field which is mapped conformally onto 
another Einstein field. 2 

The tetrad of vectors lIZ, nlZ, mlZ, and mlZ, defined by 

r=o~, nlZ=o;+HO~, mlZ=oij, 

where (Xl, X2, xo, xU) == (p, a, " ~), satisfy the ortho­
normality conditions 

IlZnlZ = _mlZm" = 1, 

all other contractions being zero. Such a tetrad is a 
null tetrad in the sense of Newman and Penrose.8 

The intrinsic derivatives are given by 

t/J;1 = IlZot/J/oxlZ = ot/J/op, 

t/J;2 = nlZot/J/oxlZ = ot/J/oa + Hot/Jlop, 
and 

Substituting the coordinates into the commutation 
relations satisfied by these intrinsic derivatives, and 
using (2.2), gives all spin coefficients zero except 

Y242 = oHjo,. 
The Newman-Penrose field equations then yield 

"Po = "P1 = "P2 = "Pa = 0, "P4 = -02H/o,2, 
where "Po, .•• , "P4 are fiv:e independent complex tetrad 
components of the Weyl tensor C,,{Jy6' namely 

"Po = -C"{Jy61IZm{JPm6 = -C1a13 , 

"P1 = -CIZ{JY61IZn{J[7m6 = -C1213 , 

C l IZ {J Y -6 C "P2 = ,,{Jy6 m n m = 1324 , 

C 1" {J y -6 C "Pa = a.{Jy6 n n m = 1224 , 

and 
C a. -(J y -6 C "P4 = - lZ{Jy6n m n m = - 2424. 

The metric, field equations, and tetrad remain 
invariant in form when subjected to either of the 

7 M. Triimper and E. Schucking (unpublished). 
8 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 

p' = p + df ~ + d! ,+ df ! + d! f, a' = a, 
da da da da 

,,= ,+ f(a), 

/IZ -. lIZ nlZ -. nlZ + df d! /IZ _ df mlZ _ d! ma. 
, da da da da' 

mlZ-.m" _ df /IZ 
da ' 

(2.3) 

with 

d21' _ d2 i df dif-
H' = H + _J ,,+ _J "+ __ 

da2 da2 dada 
or 

p' = p + f(a) , a' = a, ,,=, 
with H' = H + df (2.4) 

da 

The Gauss-Codazzi-Ricci equations [(1.1)-(l.4)1 
were discussed in a previous paper.6 In particular, for 
empty space-times of type N (which include the plane­
fronted gravitational waves), it was shown that 
embedding is only possible if 

Equations (1.1)-(1.3) are solved for the plane-fronted 
gravitational waves with a12 ¥: 0 (Sec. 3) and with 
a12 = 0, a34 = ba4 = 0 (Sec. 4). The only other 
possibility, that is, a12 = 0 but not both aa4 and ba4 
zero, subdivides into several cases which are not 
completely solved. 

3. EMBEDDINGS OF THE PLANE-FRONTED 
GRAVITATIONAL WAVES WITH a12 ¥< 0 

The Gauss equations (1.1) give 

an = a13 = a34 = bn = b13 = b34 = 0, 

e1 = -e2' 
b23 = Ea23 , 

baa = Eaaa , 

b12 = Ean, 

b22 = Ea22 + Ee1"P4/a44 , 

where E = -=-1. The transformation of normals (1.9) 
can be chosen to make a12 equal to unity. The Codazzi 
equations (1.2) and the Ricci equations (1.4) can then 
be solved to give Sm and amn in terms of two real 
functions A(a), which is nonzero, and B(a). In fact, 

Sl = S3 = 0, S2 = B(a), 
02H 

a33 = -A(a) 0,2 ' 

dA oH 02H oH 
a = - - . - - A -- - e EBA -

23 da o~ o~oa 2 a~ , 
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and 
oH oH 

a = pe €B + H - A - . -
22 2 A, o~ 

- €e1B[ - 0(::) + e1EBAH] 

o[ .,...o(AH)J o[e1€BAH] 
+ ou2 + AU • 

In this calculation, which is somewhat lengthy, two 
functions of integrability have been set zero by the 
transformations (2.3) and (2.4). The field equations 
(2.2) have also been used and it can be shown that the 
Codazzi equations (1.3) are identically satisfied. 

Equations (1.5)-(1.7), with amn , bmn , and Sn 

replaced by the expressions found above, can now be 
solved for the normals 'f)~, 'f)~, and the embedding 
coordinates yQ. In particular, 

yQ = -e1AHFQ + GQ~ + GQ' 

+ «elAdFQ /dd) + €ABFQ)p + f JQ dd, 

where GQ are constants and FQ, JQ are real functions 
of u satisfying the equations 

e1FQ = d[elA d:a
Q 
+ €ABFQ J/ du (3.1) 

and 

dFQ + JQ + €e1AB dJQ _ A d
2
JQ 

du du du? 

_ dA. dJQ = O. (32) 
du du . 

To obtain explicit embeddings of the plane-fronted 
gravitational waves, suppose that Fl and F2 satisfy 
Eq. (3.1), J1 and J2 satisfy the homogeneous equation 
corresponding to (3.2), and Ll and L2 satisfy Eq. 
(3.2) with FQ replaced by Fl and F'l., respectively. 
Then 

where Zj, CQ are constants and 

yi = -AHF} + p(elEABFl + A dFl /du) + f Ll du, 

yi = -AHF2 + p(el€ABFz + A dF2/du) + f L2 du, 

y~ =~, y~ =~, y~ = fJ1dq, y~ = fJ2dq. 

Define the functions E1 , ••• , E1 by 

El = FIJI - F2J2 , 

E2 = L1Jl - L?1z, 

E3 = A[JI dFI 
- J2 dF?] - 1, 

dq dq 

E = A[F dJl _ F dJ2] + 1 
4 1 dq 2 dq , 

E - J dLl _ J dL2 L dJ 1 _ L dJ 2 
5 - 1 du 2 du + 1 dq 2 dq , 

E6 = A[dFl • dJI _ dF'l. . dJ2] _ €e1B, 
du dq dq dq 

E7 = 2A2[dLl • dJl _ dL2 • dJ2 ] + 1. 
dq du du dq 

Because of the definitions of F1 , ••• , L 2 , these seven 
functions satisfy 

dEI/du = A-lCEa + E4], 

dE2/du = E5 , 

[ 
d(AB)] dEa/dq = E6 - €elBEa + 1 - Eel ~ E1 • 

dE,/dq = El + E6 + €e1BE" 
dEs/du = A-2[Ea + E7] + A-lEz 

-l[ dAJ + A €e1AB - du E5 , 

dEa/du = A-I[Es + E4 ] - A-I dA E6 
du 

dB -1 dA 
- Eel - E4 - EeIA B - E4 , 

du du 

dE7/dq = 2AEs + 2E6 + 2EeIBE7 • 

The values of Fl • ... ,L2 and dFl/da, ... , dLz/da 
can be chosen arbitrarily at any point P. If they are 
chosen to make E1 , ••• , E7 zero at P, then by repeated 
differentiation of the above, all derivatives of 
El , ••• ,E7 will be zero at P. With this choice of 
Fl , ••• ,L2 and dF1/da,"', dL2/du, the functions 
E l , •.. , E7 will vanish in a neighborhood of P and 
then the pseudo-Euclidean metric 

ds2 = 2 dyi dy~ - 2 dyi dy~ - 2 dy~ dy: (3.3) 

is transformed into 

ds2 = 2J1 da[-d(AH)F1 - AH dFI dd + Ll da 
dd 

+ pFI da + dp(e1€BAFI + A a::l ) ] 

- 2J2 da[-d(AH)F2 - AH dF'l. da + L2 da 
dd 

+ pFz da + dp(e1EBAF'l. + A a;:2) ] 
- 2d~d~ 

= -2 dd d(AH)E1 - 2H du2(Ea + 1) 

+ 2 dqZE2 + 2p dq2El 

+ 2 da dp[Ea + 1 + e1€BAE1] - 2 d, d~ 
= -2H dq2 + 2 dq dp - 2 d~ d{. 
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Notice that, although the field equations (2.2) were 
used in solving the Gauss-Codazzi-Ricci equations, 
they play no part in the above embedding. The 
embedding applies to the general plane-fronted waves 
(2.1). The embedding space (3.3) is of signature -2 
and can be put in the form 

ds2 = (dZ1)2 + (dZ2)2 - (dZ3)2 - (dZ')2 
- (dZ5)2 - (dZ6)2. (3.4) 

As examples of members of the two-parameter 
family of embeddings, consider the cases A = 1, 
B = 0, and A = 1, B = Eel' In the first case, 

ZI = (-H sinh a + p cosh a + la cosh a 
- l sinh a + sinh a)/2i , 

Z2 = (-H cosh a + p sinh a + la sinh u 
- l cosh a - cosh a)/2i , 

z3 = a + ~)/2i, 
Z4 = -i({ - ~)/2i, 

Z5 = (-H sinh a + p cosh a + la cosh a 

- l sinh a - sinh a)/2!, 

Z6 = (-H cosh a + p sinh a + la sinh a 

- l cosh a + cosh a)/2t. 
In the second case, 

Zl = OCl exp {-la(S! - I)} + fh exp {la(S! - I)}, 

Z2 = OCa exp {la(Sl + I)} + P2 exp {-la(S! + I)}, 

z3 = ({ + ~)/2!, 
z, = -ia - ~)/2i, 
Z5 = OCI exp {-la(S! - I)} - PI exp {la(S! - I)}, 

Z8 = OC2 exp {la(S! + I)} - P2 exp {-la(S! + I)}, 

where 
OCl = - [S + 5i ]/(10·2i ), OC2 = [5 - Si]/(1O'2i ), 

and 
PI = [-2H + (p - lel)(l + Si)]/(2'2!), 

P2 = [-2H + (p - lel)(l - Si)]/(2·2i). 

4. EMBEDDINGS OF THE PLANE-FRONTED 
GRAVITATIONAL WAVES WITH ala = 0, 

aM = hM = 0 

The Gauss equations (1.1) give 

all = a18 = Ott. = aM = bll = bls = ba = bs, = 0, 

el = -ea, b2s = Eaaa, 

bas = Eaaa = Eelo"H/o~2, 
where E = ± 1 and a transformation of normals (1.9) 
has been used to make 

b22 = Eau - E. 

The Codazzi-Ricci equations can be solved to give 
amn and Sm in terms of a single real function B(a). 

The embedding coordinates are then found to be 

yQ = HFQ + GQ~ + (iQ{ 

- (elEBFQ + d;a
Q

) p + f JQ da, 

where GQ are constants, FQ are real functions of a 
satisfying the equation 

d[elEBFQ + dFQ /da]/da = 0, (4.1) 

and JQ are real functions of a satisfying 

dFQ dJQ d2JQ 
- - EB- + e1- = 0. (4.2) 
da da la2 

To exhibit the embedding ~xplicitly, suppose that 
Fl and F2 satisfy Eq. (4.1), Jl and J 2 satisfy the 
homogeneous equation corresponding to (4.2), and 
L1 and L2 satisfy Eq. (4.2) with FQ replaced by F1 
and F2 , respectively. Then, 

yQ = Z~Yfl + CQ, 
where Z~ and CQ are constants and 

y~ = elHFl - pe1(elEBF1 + ~) + f L1 da, 

y~ = elHF2 - pel (elEBF2 + ~) + f L2 da, 

Yl = {, Y1 =~, Y1 = J1 da, 3 - 4 r 5 f 
The seven functions 

E1 = FIJI - F2J2, 

E2 = L1J1 - La12, 

E3 = -el J1 - - J2 - - 1, [ 
dFI dFI ] 

da da 

E, = -e1 F1- - FI - + 1, [ 
dJl dJ2] 
da da 

E - J dLl _ J dL2 + L dJl _ L dJ20 

5 - 1 da 2 da 1 da 2 da ' 

E6 = _e1[dFl . dJl _ dF2. dJ2] _ e1EB, 
da da da da 

E7 = 2[dLl . dJl _ dL2o • dJ2] + 1 
da da da da 

satisfy 
dEl/da = -e1[Ea + E,], 

dE,,/da = E5, 

dEs/da = E6 - elEBEs + E(dB/da)El' 

dE,/da = Ee + elEBE" 
dE5/da = E1 + Es + elEBE,., 
dEs/da = -e1E(dB/da)E" 
dE1/da = 2E6 + 2elEBE1· 
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As in the last section, F1, ... , L2 and dF1/dO', ••. , 
dL2/dO' can be chosen at any point P so that E1, ..• , E7 
vanish in a neighborhood of P. The pseudo-Euclidean 
metric (3, 3) is then transformed into 

ds2 = 2J1 dO'[e1F1 dH + e1H dFl dO' 
dO' 

- dpel(~l + elEBFl) + Ll dO' ] 

[ 
dF2 

- 2J2 dO' elF2 dH + elH - dO' 
dO' 

- dpel(~2 + e1EBF2) + L2 dO' ] - 2 d, d~ 
= 2el dO' dHEl - 2H d0'2(E3 + 1) 

+ 2 dp dO'(E3 + 1) - 2EB dp dO'El 

+ 2d0'2E2 - 2d'd~ 

= -2H d0'2 + 2 dp dO' - 2 d, d~. 

As an example of the embedding, take B = O. Then 
the metric (3.4) is transformed into the plane-fronted 
wave under the transformation 

Zl = (HelO' - elP - taa - 0')/2t , 
Z2 = (Hel - 10'2)/21, 

Z3 = a + ~)/2t, 
Z4 = -i(' - ~)/2!, 

Z5 = (-HelO' + elP + 10'3 - 0')/2t , 

Z6 = (-Hel - f0'2)/2t. 

Again the family of embeddings found in this 
section does not depend upon the field equations 
(2.2). These embeddings, and those of the last section, 
remain embeddings of the plane-fronted waves 
when the terms fLl dO' and fL2 dO' are omitted from 
the embedding coordinates. Using this fact, the 
pseudo-Euclidean metric (3.16) is transformed into the 
plane-fronted waves under the particularly simple 
transformations 

y~ = H 0' - p, y~ = H, y~ =~, y~ = " 
y~ = -0', y~ = _to'2. 

In general, this will be a global embedding of the 
plane-fronted waves in six-dimensional pseudo­
Euclidean space of signature - 2. Penrose9 has 
proved that the plane waves (that is plane-fronted 
waves with a2H/a,2 a function of 0' alone) cannot be 

• R. Penrose, Rev. Mod. Phys. 37, 215 (1965). 

embedded globally in a pseudo-Euclidean space of 
dimension n and signature 2 - n. 

5. EMBEDDINGS OF OTHER SPACE-TIMES 

The space-times considered in this section are 
those which have already been embedded by Rosen.l 

They are labeled, following Rosen, as AI, BI, ... ,B5, 
Cl,· .. ,C8, Dl,···, D4, El, Fl,···, F3, Gl, 
HI,··· ,H3,n,ll,··· ,110. ThelabelingA,··· ,J 
is characteristic of the embeddings found by Rosen 
but is of no consequence to the present discussion. 
The aim of this section is to give. embeddings in 
pseudo-Euclidean spaces of lower dimensions than 
those of Rosen. It is obvious that an embedding of 
any space-time in four dimensions is minimal and an 
embedding of a nontlat space-time in five dimensions 
is minimal. It is also well knownlo that an embedding 
of an empty space-time in six dimensions is minimal. 
Therefore the embeddings, given by Rosen, of the 
metrics AI, Bl,···, B5, CI, C2, C5,···, C8, 
Dl, ... , D4, JI, ... ,17 are trivially minimal a~d 
these metrics will not be considered here. The results 
of this, and the next section are summarized in the 
following table. 

TABLE I. Summary. 

Space-time 

Dimension of Is dimension 
Dimension of 

embedding embedding of embedding 
exhibited by exhibited here known to be 

Rosen minimal? 

C3 6 5 Yes 
C4 6 Yes 
El 7 6 Yes 
Fl 7 6 Yes 
F2 7 6 Yes 
F3 7 6 Yes 
Gl 8 7 No 
HI 10 7 t 
H2 10 7 t 
H3 10 6 Yes 
II 10 7 No 
J8 8 6 Yes 
J9 9 and 10 8 t 
JIO 9 and 10 7 Yes 
Jll 10 6 Yes 

t These space-times contain arbitrary functions and so may 
include space-times of different embedding classes. 

The new embeddings are now listed. In general the 
embedding is characterized by giving the space-time, 
the embedding space, and the appropriate transforma­
tion of coordinates. 

10 Reference 4, p. 200. 
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C3. Interior Schwarzshild solutionll : 

~[3(1 - ~~Ill- (1 - :Iltr dt
ll 

- (1 - ~:rl drll - rll(d(jll + sinll (j dcfoll); 

r l , R = const. 
dsll = (dzl )1l _ (dzll)1l _ (dz3)11 _ (dz')11 _ (dzO)Il; 

ZI = R[3(1- ~S -(1 - :SJ sinh (t/2R), 

Z2 = R[3(1 - ~~S -(1 - ~:tJ cosh (t/2R), 

Z3 = r sin (j cos cfo, 

z, = r sin (j sin cfo, 

Z5 = r cos e. 
It is interesting to note that for this space-time, the 
Weyl tensor is identically zero and the Gauss equations 
are satisfied by virtue of the symmetry of the field. 

E1. Petrov space T l , group G" metric 412: 

- (kx' + l)t[(dxl)2 + (dXIl)I] - (kx' + 1)-i(dr)1l 

+ (dx')Il; k = const. 

ds ll = (dz1)11 _ (dzll)1l _ (dz3)11 _ (dZ')2 _ (dZ5)2 

+ e(dz6)2, e = ..i1; 

9(kx' + 1)t e(kx' + 1)-t 
ZI- +~--'-~ 

- 16k2 16 

+ (kx' + 1)i[(Xl)2 + (X2)2 + 1J/2, 

Zll = 9(kx' + l)t + e(kx4 + 1)-t 
16k2 16 

+ (kx' + l)i[(Xl)2 + (XIl)2 - 1]/2, 

Z3 = x1(kx' + 1)1 

z, = xll(kx4 + 1)1, 

ZO = sinh x3(kx' + 1r*, 
Z6 = cosh x3(kx' + 1)-* if e = +1, 

or 

Z6 = sin x3(kx' + 1)-*, 

Z6 = cos x3(kx4 + 1)-* if e = -1. 

This embedding was found by solving the appropriate 
Gauss-Codazzi-Ricci equations. 

11 R. C. Tolman, Relativity, Thermodynamics and Cosmology 
(Oxford University Press, London, 1934). 

11 A. Z. Petrov, in Recent Developments in General Relativity 
(Pergamon Press, Ltd., London, 1962). 

Fl. Static cylindrically symmetric magnetic or 
electric geonl3 : 

(1 + ::r(dt
2 

- dr
2 

- dz
2
) - r2 dcfo2( 1 + ::r~ 

a = const. 
ds2 = (dZl)2 _ (dz2)11 + (dZ3)2 _ (dZ')2 _ (dzo)2 

+ e(dz6)2; e = ±1. 

( 
2)-1 

Z5 = sinh cfor 1 + :2 ' 
Z6 = cosh cfor ( 1 + ::r if e = +1, 

or 

Z5 = sin cfor ( 1 + ::r, 
Z6 = cos cfor( 1 + ::rl 

if e = -1. 

Here the function fer) satisfies 

F2. Petrov space T1 , group G" metric 512: 

- (kr + 1)t[(dXl)2 + CdX2)2J - (dr)2 

+ (kx3 + I)-I(dx')2; k = const. 

ds2 = (dZl)2 _ (dZ2)2 _ (dZ3)2 _ (dZ')2 + (dz5)11 

+ e(dz6)2, e = =1; 

1 9(kx3 + 1)t e(kx3 + 1)-t 
Z = - 16k2 + 16 

+ (kx 3 + 1)1[(Xl)1I + (XIl)2 + 1]/2, 

2 9(kx3 + 1)t e(kx3 + 1)-t 
Z = - 16kll + 16 

+ (kx3 + l)t[(Xl)2 + (X2)2 - 1]/2, 

Z3 = x\kxS + 1)1, 
Z4 = x2(kx3 + 1)t, 
ZO = sin x'(kx3 + 1r*, 
Z6 = cos x'(kx3 + 1r* if e = +1, 

IS M. A. Melvin, Phys. Letters 8, 65 (1964). 
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or 

Z5 = sinh x4(kx3 + 1)-i, 
Z6 = cosh x4(kx3 + 1)-i if € = -1. 

F3. Petrov space T1 , group G 4, metric 612 : 

(kxS + l)t[(dx4)2 - (dX1)2] - (dxS)2 

- (kx3 + 1)-i(dx2)2; k = const. 

ds2 = (dZ1)2 _ (dZ2)2 _ (dz3? + (dZ4)2 _ (dZ5)2 

+ €(dZ6)2; 

1 9(kx3 + l)t €(kx3 + 1)-1 
z=- +->---'--~ 

16k2 16 
+ (kx3 + 1)f[(X4i - (Xl)2 + 1]/2, 

2 9(kx3 + 1)1 €(kx3 + 1)-1 
z = - + -0-_-'-

16k2 16 
+ (kx 3 + 1)t[(X4)2 _ (Xl)2 - 1]/2, 

Z3 = x1(kx3 + 1)t, 
Z4 = x4(kx3 + l)t, 

Z5 = sinh x2(kx3 + l)-i, 

Z6 = cosh x2(kx3 + lr1 if € = + 1, 
or 

Z5 = sin x2(kx3 + 1)-i, 

Z6 = cos x2(kx3 + 1)-1 if € = -1. 

G1. Degenerate static vacuum field, class C14. 

This space-time is a special case of Weyl's static 
rotationally symmetric space-time considered next. 

HI. Weyl's static rotationally symmetric solutionl 3.15: 

exp (2"1') dt 2 
- exp (-2"1') 

X [(dr2 + dz2) exp (2y) + r2 dep2]; 

"I' = 1p(r, z), y = y(r, z). 

ds2 = (dZ1)2 + (dZ2)2 - (dZ3)2 - (dZ4)2 + do2 ; 

Zl = exp ("I') sin t, 

Z2 = exp ("I') cos t, 

Z3 = r exp (-"I') sin ep, 
Z4 = r exp (-"I') cos ep. 

do2 is a pseudo-Euclidean space in. which is embedded 
the two-dimensional Riemannian space with metric 

ds2 = - exp e2y - 21p)[dr2 + dz2
] 

+ [dr O(rexp -1p) + dzo(rexp _1p)J2 
or oz 

_ [dr o(exp "1') + dz o(exp 1p)J2. 
or oz 

.. J. Ehlers and W. Kundt, in Recent Developments in General 
Relativity (Pergamon Press, Ltd., London, 1962). 

11 N. Rosen, Bull. Res. Couru:il Israel Sect. A: 3, 328 (1954). 

Since16 an n-dimensional Riemannian space can 
always be embedded locally in a pseudo-Euclidean 
space of dimension tn(n + 1), it is certainly possible 
to find a space do2 of dimension 3. The resulting 
embedding space of the space-times considered here 
is therefore of dimension 7. 

H2. Cylindrical gravitational waveline element16 : 

- exp (2"1') dz2 + exp (-2"1') 

x [(dt2 - dp2) exp (2y) - p2 dep2]; 

"I' = 1p(p, t), y = yep, t). 

ds2 = _(dZ1)2 + (dZ2)2 - (dZ3)2 _(dZ4)2 + do2; 

Zl = exp ("I') sinh z, 

Z2 = exp ("I') cosh Z, 

Z3 = P exp (-"I') sin ep, 

Z4 = P exp (-"I') cos ep. 

do2 is a pseudo-Euclidean space in which is embedded 
the two-dimensional Riemannian space with metric 

- exp (2y - 21p)[dp2 - dt2] 

+ [d
p 

o(p exp -"I') + dt o(p exp _1p)J2 
op ot 

_ [d p o(exp "1') + dto(exp t)J2. 
op ot 

H3. "Anti-Mach" model: 

- (dXl)2 + 4X4 dxl dx3 - 2 dx2 dxS 

- 2(X4)2(dx3)2 _ (dX4)2. 

It is well known that this space-time is a special case 
of the plane gravitational waves and therefore, as a 
result of Secs. 3 and 4, can be embedded in a six­
dimensional Euclidean space. 

II. Godel mode[l7: 

[dxO + exp (xl/a) dX2]2 - (dX1)2 

- t exp (2xl/a)(dx2)2 - (dX3)2; a = const. 

The three-dimensional Riemannian space 

[dxO + exp (xl/a) dx2]2 - (dXl)2 - t exp (2xl/a)(dx2)2 

can always be embedded in a pseudo-Euclidean space 
of dimension t 3(3 + 1) = 6. Hence the Godel model 

11 A. Friedman, J. Math. Mech. 10, 625 (1961). 
17 K. Godel, Rev. Mod. Phys. :U, 447 (1949). 
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can be embedded in 7 dimensions. Mayer and 
others18- 20 have shown that in certain circumstances 
the Codazzi equations are consequences of the Gauss 
equation. For the Godel model a symmetric tensor 
am .. can be found satisfying the Gauss equation (5.1) 
but not the Codazzi equation (5.2). 

J8. Plane-fronted gravitational waves: 

-dx2 - dy2 - 2 du dv - 2H(x, y, u) du2. 

ds2 = _(dZ1)2 - (dz2)2 - (dZ3)2 

_ (dZ4)2 + (dZ5)2 + (dz6)2; 

Zl = X, Z2 = y, Z3 = (Hu + v + u)/2~, 
Z4 = (H - iu2)/2f, Z5 = (Hu + v - u)/2f , 

Z6 = (H + iu2)/2f . 

This is but one of the many embeddings of the plane­
fronted waves obtained in the previous sections. 

J9. Robinson-Trautman metric21 : 

u2( dy 2 + dz2
) 

C(u, v, y, z,)dv2 + du dv - Q2( ). v,y, Z, 

ds2 = _(dZI)2 - (dZ2)2 + (dZ3)2 + (dz4)2 

_ (dZ5)2 - (dZ6)2 - (dZ7)2 + (dzS)2; 

Zl = UQ-I cos Z, Z2 = UQ-I sin z, 

Z7 = UQ-l sinhy, Z8 = UQ-l coshy, 

za = (tev + u + v)/2 f , Z4 = He - v2)/21, 

Z5 = (iev + u + v)/2 f , Z6 = He + v2)/21. 

llO. Petrov space Ta, group G212: 

- exp (x2)[(dxl)2 exp (-2x4) + (dX2)2] 

- 2dxB dx4 + X2[X3 + exp (x2)](dx4)2. 

ds2 = - (dZI)2 - (dZ2)2 - (dz3)2 - (dZ4)2 

_ (dZ5)2 + (dZ6)2 + (dZ7)2; 

Zl = exp (ix2) exp (-x4) cos Xl, 

Z2 = exp (ix2) exp (-x4) sin Xl, 

Z3 = [4 - exp (-2x4)]! exp (ix2), 

Z4 = x3 + ix4[1 - X], 

Z5 = i[X - !(x4)2], 

Z6 = _x3 + tx4[1 + X], 

Z7 = UX + !(x4)2], 

18 W. Mayer, Trans. Am. Math. Soc. 38, 267 (1935). 
11 C. B. Allendoerfer, Am. J. Math. 61, 633 (1939). 
'0 A. Schwartz, J. Math. & Phys. 20, 30 (1941). 
21 I. Robinson and A. Trautman, Proc. Roy. Soc. (London) 

A265, 463 (1962). 

where 

X = X 2 [X3 + exp (x2)] + 4[4 - exp (-2x4)]-1 

X exp (x2) exp (-2x4). 

ll1. Petrov space T2 , Group G512: 

This space-time is type N with a five-parameter 
group of motions. It is therefore a plane gravitational 
wave and can consequently be embedded in a six­
dimensional pseudo-Euclidean space. 

6. DISCUSSION OF THE EMBEDDINGS 

The important question to be asked about a local 
embedding is whether or not the embedding space is 
of minimal dimension. For the reasons given in the 
last section, the embeddings, exhibited here, of the 
following metrics are trivially minimal: 

e3, El, F2, F3, H3, J8, Jl1. 

The space-times e4 and Fl are both Einstein­
Maxwell fields with type D Weyl tensor. Therefore, 
using the theorem quoted in the Introduction, the 
embedding of e4 exhibited by Rosen and the em­
bedding of Fl exhibited here are both minimal. 

The space-times HI, H2, and J9 are families of 
space-times and contain members of different 
embedding classes. It is therefore not appropriate to 
discuss the minimaIity of the embeddings of these 
metrics. 

It can be shown that the Gauss-Codazzi-Ricci 
equations for embedding class two cannot be satisfied 
for the space-time llO. The embedding of this space­
time exhibited here is therefore minimal. The calcula­
tion is quite straightforward and is not given. The 
result is of some importance. The space-time JIO is 
of type III and possesses hypersurface orthogonal 
geodesic rays with zero shear. The fact that this 
space-time is not of embedding class two shows that 
the necessary conditions for a space-time to be of 
embedding class two, found by the author,6 are not 
sufficient conditions. 

Only the embeddings of GI and I1 remain to be 
discussed. In principle it should be possible to find 
whether or not Eqs. (1.1)-(1.4) admit solutions for 
these space-times. Unfortunately, the calculations are 
too difficult to carry through. 
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We discuss the structure of the Dirac bracket in classical mechanics. We consider a generalization of 
the usual Poisson bracket and show the close connection of this generaliza~ion to the Lagrange brac~ets 
of classical mechanics. We show how the Dirac bracket appears as a particular case o.f the generahzed 
Poisson bracket, thus giving a simple reason why the Jacobi identity holds for the Dirac ~racket. We 
also discuss the nature of the transformations generated via the Dirac bracket and the relation of these 
to canonical transformations. 

INTRODUCTION 

SEVERAL years ago, Dirac developed a canonical 
formalism for the Hamiltonian formulation of 

classical mechanical systems which are subject to 
constraints. I The usual Hamiltonian formulation of 
classical mechanics rests on the equivalence of the 
Lagrangian and the Hamiltonian equations of motion; 
and the passage from the Lagrangian variables of 
generalized position and velocity, q and q, to the 
Hamiltonian variables of generalized position and 
momentum, q and p, is possible when and only when 
the velocities can be expressed in terms of the positions 
and the momenta. This requirement can be expressed 
in two equivalent ways: either (i) the Lagrangian 
equations of motion should specify all the accelera­
tions as functions of positions and velocities; or (ii) 
the definitions of the momenta should not lead to any 
identities among the positions and momenta alone. 
The Dirac theory of constraints was intended to 
handle precisely those systems that do not fulfill this 
requirement, namely systems whose position and 
momentum variables obey certain identities and are 
therefore not independent. These identities are the 
constraints referred to earlier. In such cases the lack 
of complete specification of the accelerations by the 
Lagrangian equations of motion manifests itself also 
in ambiguities in the passage to an equivalent 
Hamiltonian formulation. 

As a prelude to the quantization of such systems, 
Dirac proposed that the usual Poisson2 brackets of 
classical mechanics be replaced by a new algebraic 
structure, now known as the Dirac bracket,! and that 
these new brackets be made to correspond to com-

• Work supported in part by the U.S. Atomic Energy Com­
mission. 

t Present address: Tata Institute of Fundamental Research, 
Bombay, India. 

1 P. A. M. Dirac, Can. J. Math. 2, 129 (1950); "Lectures on 
Quantum Mechanics," Belfer Graduate School of Science Mono­
graph Series No.2 (Yeshiva University, New York, 1964). 

IS. D. Poisson, J. de l'Ecole Poly tech. 8, 266 (1809). 
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mutators in quantum theory. Iff(q,p) andg(q,p) are 
two functions defined on a 2N-dimensional phase 
space with coordinate variables qi ... qN' PI ... PN' 
then the Dirac bracket of fwith g, {I, g} * is defined by 

Here, the curly brackets without stars are ordinary 
Poisson brackets. The functions ()a(q,p) are a certain 
subset of all those functions whose vanishing expresses 
the constraints. They have the important property 
that if we form -a matrix whose elements are the 
Poi;son brackets of the ()a with one another, then this 
matrix is nonsingular. (It follows that we have an 
even number of ()'s.) The functions Cab(q,p) form the 
matrix inverse to the matrix of Poisson brackets: 

A summation over repeated indices is assumed in the 
equations above. 

For systems involving constraints, the Hamiltonian 
equations of motion can be expressed in terms of 
Dirac brackets, in the same way in which the equations 
of motion of systems without constraints are expres­
sible in terms of Poisson brackets. Before the Dirac 
bracket can be introduced, however, the set of all 
constraints has to be separated into two classes, 
known as first class and second class constraints. The 
functions ()a are the second class constraints, and this 
class is characterized precisely by the existence of the 
matrix Cab' The Dirac brackets share many of the 
standard properties of Poisson brackets, namely 
linearity, antisymmetry, and the Jacobi identity.3 
The main difference lies in the fact that with respect to 
them, the functions ()a behave essentially like pure 
numbers. In other words, the Dirac bracket of ()a with 

a C. G. J. Jacobi, Compt. Rend. 11, 529 (1841); Vorlesungen 
uber Dynamik, A. C1ebsch, Ed. (Reiner, Berlin, 1866, 2nd ed., 
1884). 



                                                                                                                                    

412 N. MUKUNDA AND E. C. O. SUDARSHAN 

any other function is identically zero. It is only the 
set of second class constraints that can be eliminated 
in this way by the use of the Dirac bracket. 

In this paper, we would like to study and clarify in 
an algebraic way the structure and properties of the 
Dirac bracket, by relating it to the other two algebraic 
structures of classical mechanics, namely Poisson and 
Lagrange brackets. We will also study the relationship 
between the transformations generated by the Dirac 
brackets on the one hand, and those generated by 
Poisson brackets on the other. The latter are, of course, 
the canonical transformations of classical mechanics. 
The motivation for this study is the following. The 
original proof of the Jacobi identity for the Dirac 
bracket consisted of a straightforward but rather 
lengthy verification of the identity, 4 without shedding 
much light on the structure of the bracket or suggesting 
any simple reason for suspecting that the identity 
might hold. Subsequently, it has been shown5 by 
Bergmann and Goldberg that one can start from a 
certain continuous group of coordinate transforma­
tions in phase space having special properties with 
respect to the constraints; one then finds that the 
infinitesimal Lie brackets corresponding to this group 
are, in fact, Dirac brackets. The associativity of the 
group multiplication law then automatically guar­
antees the Jacobi identity for the Dirac bracket. Our 
interest is in exhibiting in a direct and algebraic way 
the reason why the Dirac bracket looks the way it 
does and the reason why it obeys the Jacobi identity, 
and after that examine the group of coordinate 
transformations generated by it. 

In Sec. I, we briefly review the properties of 
Poisson and Lagrange brackets and of canonical 
transformations in phase space. This material is 
completely standard and is included only for the sake 
of completeness. Section 2 consists of a straight­
forward extension of Poisson brackets to what we will 
call a generalized Poisson bracket. These brackets can 
be related in a direct way to Lagrange brackets. In 
Sec. 3, we show how the Dirac brackets arise as a 
special case of the generalized Poisson brackets. 
Finally, Sec. 4 contains a discussion of the coordinate 
transformations generated by the Dirac brackets and 
of the relation of these transformations to canonical 
transformations. In this paper, we will not be inter­
ested in any particular Lagrangians or Hamiltonians, 
and we will not need to make statements which are 
valid only when the constraint functions vanish. 

• Compare the remarks by Dirac, "Lectures on Quantum Me­
chanics," Belfer Graduate School of Science Monograph Series 
No.2 (Yeshiva University, New York, 1964), p. 42. 

• P. G. Bergmann and I. Goldberg, Phys. Rev. 98, 531 
(1955). 

1. POISSON AND LAGRANGE BRACKET: 
CANONICAL TRANSFORMATIONS6 

In the 2N-dimensional phase space of a classical 
mechanical system with canonical variables qi ... qN, 
Pi' .. PN we define the Poisson bracket (PB) of any 
two functionsj(q, p) and g(q, p) to be a third function 
given by 

{j, g}(q, p) = i (Of . .EK _ of . .EK). (1.1) 
k=l Oqk OPk OPk Oqk 

Introducing the variables 
N 

w lL = L(blLkqk + blL,k+NPk) (1.2) 
k=l 

and the constant matrix 

(1.3) 

we could rewrite Eq. (1.1), defining the PB i.n tensor 
notation7 

In either form [(1.1) or (1.4)], the PB satisfies the 
Jacobi identity 

{{h,f}, g} + {{f, g}, h} + {{g, h},f} = 0 (1.5) 

for any three functionsj, g, h. Using the form (1.4), 
the only property of EIlV used is its antisymmetry. 

Canonical transformations can be characterized in 
the following way. The PB's of the basic variables 
w lL with one another have the standard values 

Using the definiton (1.4), we see that the PB pre­
serving property of canonical transformations can be 
transcribed as follows: 

OW'IL OW'V 
-- • -- E"P = E ILV 

oW" owP (1.6) 

Thus canonical transformations are those transforma­
tions with respect to which EIlV behaves as an invariant 
second rank antisymmetric tensor of contravariant 
type. 

The covariant tensor EILV is defined as the inverse 
matrix to EIlV and has the elements: 

EILV = -blL,v+N + (j/L+N,v' (1.7) 

Given any set cpa(w) of 2N-independent functions we 
could express the wlL as functions of cpa. Then we 

• See, for example, any of the standard texts, such as: H. Gold­
stein, Classical Mechanics (Addison-Wesley Publishing Company, 
Inc., Reading, Mass., 1965); H. C. Corben and P. Stehle, Classical 
Mechanics (John Wiley & Sons, Inc., New York, 1960). 

7 For an introduction to the tensor notation, see C. W. Kilmister, 
Hamiltonian Dynamics (John Wiley & Sons, Inc., New York. 1964). 
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define the Lagrange bracket (LB)8 of cpa and Cpp 
according to 

(1.8) 

It is then well known that 

(1.9) 

More relevant is the identity 

which is the Lagrangian analogue of the Jacobi 
identity (1.5). It is seen that the left-hand side of (1.10) 

according to (2.2a), then we also define hew) to go over 
into h'(w') according to (2.2b): 

h'(w') = hew). (2.2b) 

Equation (2.1) expresses h in terms of j and g. 
Similarly, we can express h' in terms of j' and g': 

/tv of'(w') ow'P og'(w') OW'" 
= 'fJ (w) ow,p . ow/t' ow,a' owv 

= ,pa(w') of'(w') . og'(w') 
'fJ ow,p ow,a' (2.3) 

is totally anti symmetric in IX, (3, y and that the identity where 
holds as a consequence of the anti symmetry of E"v in 

::! 'P ::! ,a 
,pa(,) uW uW "V() its indices. 

2. GENERALIZED POISSON BRACKETS 

In this section we consider a generalization of the 
PB as given in (1.4).9 Let there be given a set of 
functions 'fJ"V(w), anti symmetric in f-l and 11, and 
obeying the identity (2.12) which will be derived later 
on. Define the generalized Poisson bracket (GPB) 
of any two functionsj(w), g(w) to be a third function 
h( w) given by 

{f, g} *(w) == hew) = 'fJ/JV(W) of(w) . og(w). (2.1) 
ow" owv 

We first consider the behavior of 'fJ"V(w) under co­
ordinate transformations. Let w" -+ w'" be a general 
coordinate transformation, the w'" being independent 
functions of the Wi'. Given any functionj(w), we can 
define a new function j' by the equation 

j'(w') = j(w). (2.2a) 

This is the transformation law characteristic of a 
'scalar field." By means of it we are led from a 

functionjwith a certain functional form to a function 
j' with a (generally) different functional form. The 
behavior of r}"'(w) under a general transformation of 
coordinates is fixed by requiring that the GPB of 
two scalar fields be itself a scalar field. Thus, if in the 
variables wI' we have 

{j, g}*(w) = hew) (2.1) 

and j(w), g(w) go over into functions j' and g' 

8 J. L. Lagrange, Memoires de !'Institut de France, (1808); 
reprinted in Oeuvres, Vol. VI, p. 713. 

• See, for example, C. W. Kilmister, Ref. 7, Chap. 4. 

'fJ w =--'--rr w. 
ow" owv (2.4) 

Thus rr(w) transforms as a second-rank antisym­
metric tensor of contravariant type. 

We may state the content of (2.4) in the following 
form. The GPB is an operation whereby, given two 
scalar fields j and g, a third one h is determined. In each 
coordinate system, a given scalar field is represented 
by a specific function of those coordinates. The 
explicit expression of the function representing h in 
terms of those representing j and g, depends on the 
particular coordinate system. Equation (2.4) shows 
how this explicit expression changes when one goes 
from one set of coordinates to another. 

Next we define the analogues of canonical trans­
formations. For this purpose, we focus attention on 
the change in functional form, j -+ j', produced by a 
change of coordinates, w -+ w', when j' is defined in 
terms ofjby (2.2a). Given twofunctionsj(w),g(w), 
we consider the functions j'(w), g'(w) which are 
obtained by using the functional forms j' , g' but with 
arguments w instead of w'. For an arbitrary change 
of coordinates, the GPB of j(w) with g(w) 

{f, g} *(w) == hew) = 'fJ"V(w) of(w) . og(w) (2.5) 
ow" owv 

and that ofj'(w) with g'(w) 

{f', g'} *(w) = k(w) = r}"'(w) orew) og'(w) (2.6) 
ow" owv 

will not bear any special relationship to one another. 
However, if we demand that the transformation be 
such that 

k(w) = h'(w), (2.7) 
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where 

h' (w') = hew), (2.8) 

then we have the following consequence: 

{j',g/}*(W) = ({f,g}*)'(w). (2.9) 

This is the statement that the operation of taking 
the GPB commutes with the operation of changing 
the functional form of a function according to the 
prescription given above. The requirement (2.7) is 
equivalent to the following one: 

~ 'p ~ It, 
Pac ') uW uW UV() 

'YJ w =--rr w . 
ow/l owv (2.10) 

Notice that the same functions 'Yj/lV, but with different 
arguments, appear on the two sides of (2.10). Trans­
formations w -+ w', which obey (2.10), may be called 
canonical with respect to the GPB defined by 'Yj/lV(w). 
In the particular case when 'Yj/lV happens to be E/l V

, 

(2.10) coincides with (1.9), and we obtain the usual 
canonical transformations of classical mechanics. 

We conclude this section with a discussion of the 
Jacobi identity.lO We will demand that 'Yj/lV(w) be such 
that for any three functionsf, g, h, we have 

{{f, g}*, h}* + {{g, h}*,f}* 

+ {{h,f}*, g}* = 0. (2.11) 

If (2.1) is substituted in (2.11), two kinds of terms 
appear, those without derivatives of 'Yj/lV and those 
with derivatives. The former vanish by themselves, 
due to the anti symmetry of 'Yj/lv. The vanishing of the 
latter leads to 

'Yj},/l(w) o'YjvP(w) + 'YjV/l(w) o'YjP},(w) + 'YjP/l(w) o'Yj},V(w) = 0. 
ow/l ow/l ow/l 

(2.12) 

Thus, the Jacobi identity for the GPB is equivalent to 
(2.12). We will assume that the GPB is nondegenerate 
in the sense that the functions 'Yj/lv(w) form a non­
singular matrix, and we denote the matrix elements of 
the inverse matrix by 'Yj/lv(w): 

(2.13) 

Then (2.12) can be written much more simply in terms 
of 'Yj/lv(w): 

(2.14) 

10 1. M. Souriau. Commun. Math. Phys. 1, 374 (\966). 

Notice the resemblance between (2.14) and (1.10). 
The only difference is that in place of the wP variables 
in (2.14), we have the cpa; variables in (1.10), while 
'Yj/lv(w) is replaced by the LB La;iCP). This shows the 
close connection between the Jacobi identity for a 
GPB, on the one hand, and a standard property ofLB's 
on the other. We will make use of this connection in 
the next section to derive the Dirac bracket. 

3. THE DIRAC BRACKET 

Let there be given a set of 2(N :- y) functions 

oa(w), a = 1,2, ... ,2(N - y), (3.1) 

which are independent of one another. Let us choose 
2y additional functions 

1pm(w) , m = 1,2, ... ,2y, (3.2) 

so that the Oa and 1pm together form 2N independent 
functions. We can form two matrices, one made up of 
the PB's of the O's and 1p'S with each other, the other 
made up of their LB's. According to (1.9), these 
matrices are inverse to one another. This may be 
expressed as follows: 

{oa, Ob}LbC(O, 1p) + (O", 1pm}Lmc(O, 1p) = 15~, (3.3a) 

{oa, Ob}Lbn(O, 1p) + {oa, 1pm}Lmn(O, 1p) = 0, (3.3b) 

{1pm, oa}Lab(O, 1p) + {1pm, 1pn}Lnb(O, 1p) = 0, (3.3c) 

{1pm, oa}Lan(O, 1p) + {1pm, VJl>}Lpn(O, 1p) = 15::'. (3.3d) 

A similar set of equations can be written down, 
corresponding to taking the matrix of LB's first, and 
that of PB's next. Here, the L's stand for the LB's: 

ow/l owv 
Lmn(O, 1p) = E/l V o1pm . o1pn . 

The LB's by themselves obey the identities (1.10). A 
subset of these involves differentiation with respect to 
1pm alone. These are 

oLmn(O, 1p) + aLnICO, 1p) + aL!m(O, 1p) = O. (3.5) 
01p! 01pm 01pn 

The considerations of the previous section show that 
if we set 

(3.6) 
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if f}mn((J, 1p) possesses an inverse f}mn(o, 1p) 

(3.7) 

and if we define a bracket by 

{j, g}*(O, 1p) == f}mn(o, 1p) o~m ::n ' (3.8) 

then this will obey the Jacobi identity and therefore 
be a GPB in 2y variables. In this definition, we have 
used the fact that any function of roll can be written as 
a function of ()a, 1pm. Partial differentiation with 
respect to a 1pm is carried out keeping the ()a and the 
other 1p's constant. Clearly, 

(3.9) 

We now show that the bracket (3.8) is just the Dirac 
bracket (DB) off with g. For this, we must first find 
the matrix 1]mn inverse to 1]mn' Let us assume that the 
submatrix of PB's of the ()a with one another possesses 
an inverse: 

C «() '"), {Oil OC} = (jc ab ,.." , a· (3.10) 

From (3.3b), we then find 

Substituting this in (3.3d) gives 

[{1pm, 1p1} _ {1pm, OIl}ClliO, 1p){()a, 1p1}]1]ln«(), 1p) = (j;:'. 

(3.12) 

This shows that 1]mn exists, and is given by 

1]mn«(),1p) = {1pm, 1p1l} _ {1pm, ()a}call«(), 1p){()b, 1pn}. 

(3.13) 

Conversely, it may be easily shown that if 1]mn exists, 
then so does Cab' 

We now use (3.13) in (3.8) to find 

{j, g} * 

= [--Ef... {.lIm ,"n} _ Y1... {.lIm ()a}c {Oil ,"n}] ~ 
01pm T 'T 01pm T' ab' T • 01pn' 

(3.14) 

It is easy to see that by the addition of terms which in 
fact vanish, we can rewrite this in the form 

{j, g} * = {j, 1pn} ':J
0

: - {j, ()a}Cab{OIl, 1pn} ':Jog. 
U1p U1pn 

(3.15) 

Once again, by the addition of vanishing terms, we 

write (3.15) in the final form 

We see at once that this GPB in 2y variables is just the 
DB written down in the Introduction. We also see 
that it is an expression determined solely by the func­
tions oa, and does not depend on the choice of the func­
tions 1pm which were originally used in (3.8) to define it. 

4. DIRAC BRACKET TRANSFORMATIONS 

In this last section, we consider the transformations 
generated via the DB,ll or more generally, the co­
ordinate transformations which are canonical with 
respect to the DB. 

We first take up the question of the nature of these 
transformations per se. Written in the form (3.8), we 
see that the DB is a nondegenerate GPB in 2y variables. 
For the moment, we ignore the presence of the vari­
ables ()a. Now it is a well-known fact in the mathe­
maticalliterature that all such symplectic structures in 
a given number of variables are locally isomorphic.9 

In other words, by proper choice of the variables 
1pm, the coefficients in (3.8) can be made constants, so 
that the matrix II1'}mn II has exactly the sume structure 
as the matrix Ilellvll in (1.3). Nevertheless, it may be 
useful to give here a simple proof of this statement, at 
least for the sake of completeness. 

For this purpose, consider (3.5): 

01]mn + 01]nl + 01]lm = O. 
01p1 01pm 01pn 

(3.5) 

This equation is analogous to one set of the Maxwell 
equations of electrodynamics, and exactly as in that 
case, one can show that 1]mn may be expressed as a 
"curl" of a "vector"12: 

'I'l (,") = oAm(1p) _ oAn(1p) (4.1) 
'/mn T o1pn 01pm' 

We have seen earlier that 1]mn transforms as a contra­
variant tensor of the second rank, under an arbitrary 
change of coordinates 1p --lo-1p'. Then, 1Jmn transforms 
as a covariant tensor, while Am(1p) is a covariant 
vector field. The differentials of the coordinates, 

11 <?iven a ~PB. {f, g}* ~ the transformation generated by a 
functIon </>(w) vIa thIS GPB IS the transformation 

few) ->- [,(w) == [(exp i)f](w) 

= few) + {</>,fj*(w) + (I/2!){</>, {</>,f}*}*, (w) + .... 
~ecause of the Jacobi identity obeyed by the GPB, this transforma­
tion may be shown to be canonical with respect to this GPB. 

12 See, for instance, J. L. Synge, Relativity: The Special Theory 
(North-Holland Publishing Company, Amsterdam 1965), p. 344. 
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dVr , form a contravariant vector, so that the ex- Then the DB assumes the form 
pression 

(4.2) 

is invariant. From the theory of the Pfaff problem,13 
it is known that one can always find a coordinate 
system, with coordinates ~m, in which (4.2) assumes 
the form 

In this coordinate system, the components A;,.a) of 
the covariant vector field are linear in the coordinates, 
so that the "';"n(~) are constants. The same is then 
true of the .,,'mn and without loss of generality we may 
assume that the matrix 11.,,'mn II has the same structure 
as 11£'lVll in (1.3). Since the GPB is assumed to be 
nondegenerate, we conclude that r = y. 

Thus we can find functions ~1, ... , ~2r of the "Pm 

such that 

(4.4) 

Written in this form, we immediately see that the 
coordinate transformations which are canonical with 
respect to the DB are none other than the usual 
canonical transformation in the variables ~m. (We 
are ignoring, of course, arbitrary transformations 
that may be performed among the variables (Ja by 
themselves.) The group of transformations generated 
via the DB (3.16) is isomorphic to the group of 
canonical transformations in 2r variables generated 
via the PB in 2r variables. ll (Under these transforma­
tions, the variables (Ja do not change.) 

We consider next the relation of these transforma­
tions to the usual canonical transformations in the 
basic variables W ll • We started with function's of the 
variables w", and given the set of functions (Ja(w), we 
defined the DB (3.16). We can then ask whether or not 
and under what circumstances transformations canon­
ical with respect to the DB also belong to the group of 
usual canonical transformations on the wll• We shall 
answer this question by first looking at a simple 
example. 

Let us take the case where the 2(N - r) functions 
oa( w) are just a subset of the canonical q and p 
variables: 

18 E. Goursat, Lecons sur Ie Probleme de Pfaff (Hermann & Cie., 
Paris, 1922), p. 14. 

{t, g} *(q, p) = i (Of og _ of Og). (4.6) 
k=1 Oqk OPk OPk Oqk 

In this case, the DB has the effect of "freezing" 
(N - r) canonical pairs of degrees of freedom. If 
we now consider a transformation generatedll via 
the DB by means of a function cp, depending only on 

f(q, p) --+ f'(q, p) = f(q, p) + {cp,!} *(q, p) 

1 + 2! {cp, {cp,!} *} *(q, p) + ... 

= ([exp ¢]f)(q, p), (4.7) 

such a transformation is also a canonical one in terms 
of the basic variables w", in which ql ... qr' PI ... Pr 
transform among themselves, while q,+1" ;qN' 
P,+1 ... PN remain unchanged. [It should be noted 
that if the function cp used in (4.7) also depends on 
the "frozen" variables qr+1 ... q N, Pr+1 ... P N' the 
resulting transformation is generally not canonical 
in the basic variables Wll.] 

Returning to the general case of arbitrary functions 
oa, one checks easily that the DB is unaltered if in 
place of (Ja, one uses a set of independent functions of 
them, O'a. Thus in some cases, it may be possible to 
replace ()a by ()'a in such a way that the O'a are in fact 
a subset of 2(N - r) canonical q, p variables. Precisely 
when this can be done is shown by the following: 

Theorem: The necessary and sufficient condition, 
that the DB determined by the 2(N - r) functions 
(Ja(w) corresponds to "freezing" (N - r) pairs of 
canonical variables in the ordinary PB is that the 
functions (Ju form a function group of rank 2(N - r ).14 

To prove this theorem, we note that the necessity 
is obvious, since a set of 2(N - r) variables made up 
of (N - r) q's and the corresponding p's does form 
a function group of rank 2(N - r). On the other 
hand, this condition is sufficient. For, given such a 
function group, one can replace the oa by functions 
of themselves, (J'U, such that the PB's of the (J'a with 
each other assume the constant values corresponding 
to (N - r) pairs of canonical variables.14 

We conclude by noting the distinguishing prop­
erties of the DB, which are suggested by (4.4). Given 

14 A set of functions O"(w) forms a function group if the PB's of 
the 0" with each other can be expressed as functions of the 0" alone. 
The rank ofa function group is the number of independent functions 
in the function group. For further properties and details, see: L. 
P. Eisenhart, Continuous Groups of Transformation (Dover Publica­
tions, Inc., New York, 1%1). 
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the functions oa(w), one could adjoin an arbitrary set 
of new functions ,mew), making sure only that oa and 
,m together form 2N independent functions; and, 
one could then define a bracket of two functions f( w), 
g(w) by 

{ }# mn of ag (4 8) f, g = E a,m . o{n . . 
This bracket certainly obey~ the Jacobi identity, and 
treats the oa like pure numbers: 

{j, (ja}# = o. (4.9) 

One can then ask what is special about the DB. 
There are two features which are special to the DB. 
Firstly, while (4.4) shows that the DB is a particular 
case of the bracket (4.8), in general, for arbitrarily 
chosen functions ,mew), (4.8) will not be a structure 
determined by the oa alone. The variables ;m appearing 
in (4.4) are, on the other hand, determined completely 
by the (ja (up to a canonical transformation of the 
~m among themselves). Secondly, the DB bears a 
special relationship to the PB in the following sense. 
If a functionf(w) is such that 

{j,oa} = 0, all a, (4.l0) 

10URNAL OF MATHEMATICAL PHYSICS 

then for all functions g(w), we have 

{j, g} * = {j, g}. (4.11) 

Such a function few) therefore generates the same 
transformation via the DB as it does via the PB.ll 

SUMMARY 

We have shown that the Dirac bracket arises as a 
special case of the generalized Poisson bracket. We 
have traced the origin of the Jacobi identity for Dirac 
brackets to a standard property of Lagrange brackets. 
Finally, we have seen that when and only when the 
second class constraints oa form a function group 
does the Dirac bracket correspond to "freezing" a 
subset of canonical variables in the ordinary Poisson 
bracket. 
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Unitary representations of 0(2, 1) belonging to the exceptional class are reduced with respect to the 
noncompact subgroup 0(1, 1). We recover the result that the spectrum of the generator of this subgroup 
covers the real line twice. Unitary representations of 0(3, 1) belonging to the supplementary series are 
reduced with respect to the noncompact subgroup 0(2,1). These representations of 0(3, 1) may be 
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representation appears only once, while the nonexceptional ones appear twice each. 

INTRODUCTION 

The purpose of this paper is to examine some 
properties of the supplementary series of unitary 
irreducible representations (UIR's) of the homoge-
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neous Lorentz groups 0(2, 1) and 0(3, 1).1 In previous 
papers we have shown how the UIR's of 0(2, 1) 
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belonging to the continuous nonexceptional and to the 
discrete classes can be written in such a way that the 
reduction of these VIR's with respect to the non­
compact 0(1, 1) subgroup can be carried out; and 
in a similar way we have shown how the VIR's of 
0(3, 1) belonging to the principal series can be 
reduced under the noncompact 0(2,1) subgroup of 
0(3, 1).2 Here we take up the cases of the exceptional 
VIR's of 0(2, 1) and the supplementary series of 
UIR's of 0(3, 1) with a view to reducing them under 
0(1, 1) and 0(2, 1), respectively. The methods we 
use are similar to those employed in the papers 
quoted above. 

The material of this paper is arranged as follows. 
In Sec. 1, we give briefly the details concerning the 
VIR's of 0(2, 1) and 0(3, 1) which are of interest to 
us. This description is in a basis in which the VIR 
has been completely reduced under the relevant 
maximal compact subgroup. Sections 2 and 3 are 
devoted, respectively, to the reduction of these 
VIR's of 0(2,1) and 0(3,1) under their non­
compact subgroups. 

In comparison with the cases already treated, the 
VIR's considered here are somewhat more compli­
cated to deal with. In particular, it turns out that the 
supplementary series of VIR's of 0(3, 1) have to be 
divided into two subclasses with markedly different 
properties in their reduction under 0(2, 1). These two 
classes wi1I be dealt with in two subsections to Sec. 3. 

1. EXCEPTIONAL VIR'S OF 0(2, 1) AND 
SUPPLEMENTARY VIR'S OF 0(3, 1) 

We summarize first the relevant VIR's of 0(2, 1).3 
The group 0(2, 1) consists of all real linear uni­
modular transformations on three real variables Xi' 
j = 1,2,3, which leave invariant the quadratic form 

X~ + xi - xi, 
and do not change the sign of XS. Closely related is 
the group SU(I, 1) of two-dimensional unimodular 
pseudounitary matrices; there is a two-to-one 
homomorphism from SU(I, 1) to 0(2,1). Elements 
g of SU(I, 1) are in a one-to-one correspondence 
with matrices in the following way: 

g -+ (p ~), \rx\2 - ItW = 1. (Ll) 

[«, (J are complex numbers, and the bar denotes 

'N. Mukunda. J. Math. Phys.8, 2210(1967);9, 50(1968). These two 
papers are referred to as (A) and (B). respectively. The reduction 
of the principal series of representations of 0(3, 1) under 0(2. I) 
has also been carried out by S. Strom [Arkiv Fys. 34, 215 (1967)] 
and A. Sciarrino and M. Toller [J. Math. Phys. 8, 1252 (1967)] . 

• More details may be found in (A). and in the references quoted 
therein. 

complex conjugation.] The Lie algebra of SU(1, 1) 
[or of 0(2, 1)] is three dimensional, and the basic 
elements Jo, J1 , J2 obey the commutation rules 

[Jo ,J1] = iJ2, 

[JO,J2] = -iJ1, 

[J1 ,J2] = -iJo· 

(1.2) 

This algebra possesses a quadratic Casimir operator 
Q given by 

Q = J: + J; - Jg. (1.3) 

The (single-valued) VIR's of suet, 1) fall mainly 
into three categories: the continuous nonexceptional, 
the discrete, and the continuous exceptional. VIR's 
of the continuous exceptional type4 are labeled by 
the value of Q: 

Q = t - 0'2, 0 < 0' < t. 
o < Q < t. (104) 

There is one such VIR for each value of the real 
parameter 0' in the open interval given above. In these 
VIR's, the spectrum of the generator Jo [which is the 
generator of spatial rotations in 0(2, 1)] consists of 
all integers-positive, negative, and zero-each eigen­
value appearing exactly once. Thus these are single­
valued VIR's of 0(2, 1). We may introduce a basis 
into the space of the VIR, corresponding to any given 
value of 0', made up of eigenvectors of Jo: 

Jo 1m> = m 1m); m = 0, ±2, ±1," . ; 

(m' 1m) = ()m'm' (1.5) 

In such a basis, the generators J1 and J2 have the 
following structure: 

J1 1m) = H(m + i)2 - 0'2]t 1m + 1) 

+ H(m - !)2 - 0'2]t 1m - 1), 

J2 1m) = -! [em + t)2 - 0'2J! 1m + I) 
2 

+ ~ [em - ,)2 - 0'2lt 1m - 1). (1.6) 
2 

For our later use, it is necessary to mention here 
some remarkable facts relating to these VIR's of 
0(2, 1). In any UIR of 0(2, 1), denoted by R, the 
unitary operators Ui~), representing the elements g of 
0(2, 1), may be specified by means of their matrix 
elements between eigenvectors of Jo: 

ol(R)() (I UUl), ' W",m' g = m (g) m). (1.7) 

[The range of values of m and m' is appropriate to 

• V. Bargmann, Ref. 1. pp. 605 and 616. 
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the representation R.] Thus each such unitary operator 
is represented by an infinite-dimensional unitary matrix 
with discretely labeled rows and columns. Every matrix 
element of the form (1.7) for fixed R, m, m' constitutes 
a function on the group 0(2, 1). One can consider now 
the Hilbert space J(, of all (Lebesgue) square-integrable 
functions on 0(2,1), the integration being the usualleft­
and right-invariant one on the group. It has been shown 
by Bargmann5 that the set of matrix elements (1.7), 
with R restricted to run over the set of continuous 
nonexceptional UIR's and the set of discrete UIR's 
of 0(2, 1), forms a complete orthonormal basis for 
the Hilbert space J(,. On the one hand, this means that, 
given any square integrable function f(g) on the 
group 0(2, 1), one can expand it in the form 

f(g) = 1, f dRfmm{R)cu,~~{g), (1.8) 

where the integration with respect to R symbolically 
stands for the process of summing over the discrete 
UIR's, as well as the process of integration with 
respect to the continuous parameter that labels the 
set of continuous nonexceptional UIR's. On the 
other hand, if the integration over 0(2, 1) is denoted 
by the symbol dg, one has 

f dgcu,~:~2,(g)cu,~)m2(g) = ~ml'ml~m2'm2~(R', R). 

(1.9) 

Once again, in (1.9), Rand R' are restricted to run 
over the sets of UIR's that appear in (1.8); and the 
symbol ~(R', R) is a generalized one, denoting a 
Kronecker delta if Rand R' are both discrete UIR's, 
denoting zero if one is a discrete and the other a 
continuous UIR, and denoting a delta-function of 
the Dirac type if both Rand R' are continuous 
(nonexceptional) UIR's. Thus for this subset of UIR's 
of 0(2, 1), one has many of the properties that 
characterize the set of all VIR's of a compact Lie 
group as embodied in the Peter-Weyl theorem6 : one 
has both a completeness and an orthogonality relation, 
(1.8) and (1.9). However, neither of these properties 
obtains for the matrix elements (1.7) when R stands 
for a VIR of the exceptional class. On the one hand, 
it is not possible to prove that these matrix elements 
are orthogonal to the matrix elements belonging to 
other inequivalent VIR's (like the continuous non­
exceptional and the discrete ones) because the relevant 

• V. Bargmann, Ref. 1, pp. 632-639. The statement made in the 
text is strictly true for single-valued representations of 0(2, 1). For 
single-valued representations of SU(1, 1), however, the situation is 
that the matrix elements belonging to the two discrete representations Dr are outside of 3\, and are not needed to span 3\,. 

• H. Wey), Ann. Math. 35,486 (1934). 

integrals diverge; the matrix elements (1.7) do not 
belong to J(, when R is an exceptional VIR. But on 
the other hand, they are not needed to span the Hilbert 
space J(,. These facts will be relevant in our analysis 
of the supplementary series of UIR's of 0(3, 1). 

Next let us briefly summarize the UIR's of 0(3, 1) 
in which we are interested. As is well known, the 
group 0(3, 1) is the group of all real linear unimodular 
transformations on four real variables (X;, j = 1, 
2, 3, 4) that leave invariant the quadratic form 

x~ + X~ + xi - x! , 
and do not change the sign of X4' The covering group 
of 0(3, 1) is SL(2, C), the group of all complex uni­
modular matrices in two dimensions. Elements g 
in SL(2, C) are in one-to-one correspondence with 
matrices in the following way: 

g ~ (; !) , cx~ - (Jy = 1; (1.10) 

the homomorphism from SL(2, C) to 0(3, 1) is 
two-to-one. The Lie algebra of SL(2, C) is six dimen­
sional; and the basic elements L j , Nj ,j = 1, 2, 3 obey 
the following commutation rules: 

[LI , Lk ] = h'ik/LI ; 

[Lj , Nk] = iEjklNz; 

[Nj ,Nk] = -iEjkZLI' 

(1.11) 

The elements Li generate the SU(2) subgroup of 
SL(2, C), while the elements L 3 , N1 , N2 generate an 
SU(I, I) subgroup of SL(2, C). The two quadratic 
Casimir invariants of SL(2, C) are 

C1 = N;Nj - LjLj and C2 = NiL; , (1.12) 

while the Casimir invariants of the SU(2) and SU(I, 1) 
subgroups are given respectively by 

13 = LjL; and Q = N~ + N~ - 133 , (1.13) 

VIR's of SL(2, C) fall into two categories, the 
principal series and the supplementary series.7 

VIR's of the latter series are labeled by a continuous 
real parameter p which takes on values in the open 
interval 0 < p < 1: 

C1 = 1 - p2, C2 = 0; 0 < p < 1. (1.14) 

There is one such VIR for each value of p in the 
given range. In all these VIR's, the spectrum of finite­
dimensional UIR's of the subgroup SU(2) is specified 

1 M. A. Naimark, Ref. 1, p. 170. (This series is called the com­
plementary series in this book.) I. M. Gel'fand, R. A. Min1os, and 
Z. Va. Shapiro, Ref. 1, p. 247. There is an error in the equations on 
p. 248 of this book. The parameter p should be replaced by - p. 



                                                                                                                                    

420 N. MUKUNDA 

by the spectrum of the operator £2: 

£2 = 1(1 + 1), 1= 0, 1,2, ... , 00. 

The generators Jo, J1 , J2 are represented by the 
(1.15) following differential operators: 

Every VIR of SU(2) of dimensionality (21 + 1) 
for each nonnegative integral value of I appears 
exactly once. These are, then, single-valued representa­
tions of 0(3, 1). We may introduce a basis made up 
of eigenvectors of £2 and La: 

£211, m) = 1(1 + 1) II, m); La II, m) = mil, m); 

(I'm' 11m) = (Jd~m'm; -1 ~ m ~ 1. (1.16) 

In this basis, the matrix elements of L, and N; are the 
following: 

[ Lo = La, L+1 = - )2 (L1 + iL2), 

L_1 = )2 (L1 - iL2), etc']: 

(l'm'l LM 11m) = [l(l + 1)]!bl'lC~.k!', 
(1 + 1, m'l N M 11m) 

= -[(1 + 1)(21 + 1)]!C;"1I~;:}CI+1' 
(Im'l N M 11m) = 0, 

(1-I,m'INM llm)= -[1(2/+ 1)]!C;"1I;;:lC1, 

.[12 
- /]-! 

C1 = Z 412 _ 1 ' (1.17) 

2. ANALYSIS OF THE EXCEPTIONAL VIR'S 
OF 0(2,1) 

The VIR's of the exceptional series may be con­
structed explicitly in Hilbert spaces :Ie .. consisting of a 
certain class of functions /( cp) on the unit circle 
(0 ~ cp ~ 21T).S The scalar product of two elements 
/, h and the norm of /, are given by 

(j, h) .. = (2'7T)-2f"dCP'f"dCPf(CP')L .. (CP' - cp)h(cp); 

IIfll .. = (j,f)! < 00; 

L .. (cp' - cp) = (27T)! rCa + t) [1 _ cos (cp' _ cp)]"-!; 
l"r(O') 

o < 0' < t. (2.1) 

:Ie consists of all functions /( cp) with finite norm. 
The class of functions constituting :Ie .. , as well as the 
definition of the scalar product, depends on 0'. The 
unitary operator U(g) representing the element g 
[given by (1.1)] acts as follows: 

(U(g)f](cp) = lex - Pei'l'I-1
-

2"J[VJicp)], 

Jo=-i~, 
dq; 

J1 = -icos cp~ + i(O' + t)sin q;, (2.3) 
dcp 

J 2 = -i sin cp ~ - i(O' + t) cos cpo 
dq; 

The functions corresponding to the unit vectors 
1m) in (1.5) are 

and 

1m) -- [A'm(O')]-!eimlP, m = 0, ±1, ±2, ... 

Am(O') = rG + 0') r(lml + t - 0') > O. (2.4) 
ret - 0') r(lml + t + 0') 

As noted by Bargmann,S the Hilbert space :Ie .. 
contains, as a dense subset, the set of all square­
integrable functions of cp, namely all functions /( fP) 
for which 

IIf112 == (27Tr1f"I/(q;)12 dq; < 00. (2.5) 

Such functions form a Hilbert space Je with respect 
to the norm II / II. Every function in Je can be expressed 
as a Fourier Series: 

+'" 
f(cp) = ! ImeimlP, (2.6) 

ffl=-OO 

and we have 

11/112 = I I/ml2 < 00. (2.7) 
m 

The norm of/in the space :fe .. is then given by 

m 

The basic reason why :fe .. contains the set Je as a 
dense subset is that, for large Iml, Am(O') goes to zero 
like Iml-2 ... The set Je is not closed with respect to the 
norm II/ II .. , but yields Je" on completion with respect 
to it. :re .. consists of all sequences Um} for which the 
norm II! II .. , as defined in (2.8), is finite. 

We now wish to diagonalize the generator J2 • As in 
(A), we first change variables from cp to q, mapping 
the region 0 ~ fP ~ 21T into two real lines in q: 

eq = tan cp/2: 0 ~ cp ~ 7T -- - 00 < q < 00 

and 

e-q = tan (cp - 7T)/2: 
ei'P.<rP J = «(Xe itp _ P)/(fl. _ pe i'l'), (2.2) 1T ~ cp ~ 27T -- 00 > q > -00. (2.9) 

o ~ cp, VJkp) ~ 27T. 

8 V. Bargmann, Ref. 1, pp. 616 If. 

Thus the upper and the lower halves of the circum­
ference of the unit circle get mapped onto one real 
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line each. We then replace the function f(cp) by a 
pair of functions of q: 

f1(q) = [cosh qri-af(cp), 0 $; cp $; 7T; 

f2(q) = [cosh qri-af(cp), 7T $; cp $; 27T, (2.10) 

so that a given vector f in Jea is now represented by 
the two functions/,.(q). So far these steps are the same 
as in (A). If we now express the scalar product (2.1) 
in terms of/,.(q) and hr(q), we discover the appearance 
of cross terms between r = 1 and r = 2. These may be 
eliminated by working with simple linear combina­
tions offl(q) andf2(q): 

f ±(q) = Hll(q) ± f2(q»). (2.11) 

In terms of these combinations, we find that 

(j, h)a = L: L:dq' dq[J+(q')K+(q' - q)h+(q) 

+ f-(q') K_(q' - q)h_(q»), 

K±(q) = .u(O')[{cosh q - 1}a-i ± {cosh q + 1}a-i), 

.u( 0') = (27T)-i2-a rc 0' + t) . (2.12) 
reO') 

Functions f+(q) and f-(q) correspond, respectively, 
to functions f( cp) which are even and odd under the 
substitution cp -+ 27T - cpo (2.12) shows that the 
Hilbert space Jea is the direct sum of two orthogonal 
subspaces Je~ ±) ; Je~+) contains vectors for which f-(q) 
vanishes, while Je~-) contains vectors with f+(q) = O. 
We will see that the kernels K± are both positive 
definite. 

The generators may now be written as differential 
operators acting on the column vectors: 

(
I+(q»). 
I-<q) 

Quite easily we find that 

Jo = [ -i cosh q :q - i(O' + t) sinh q] @O', 

J 1 = [i sinh q :q + i(O' + t) cosh q] 00'1' (2.13) 

J 2 = -i :q 01; 0'1 = G ~). 
The operators Jo and J1 do not leave Je~+) and Je~-) 
invariant. However, these subspaces are invariant 
under J2 • This result follows directly if we express 
the operators U(exp iTJ2), starting from (2.2) and 
carrying out the changes of variable. One has 

[U(exp iTl2)!J±(q) = f ±(q + T). (2.14) 

Therefore, to diagonalize J2 , we must pass to the 

Fourier transforms of f ±(q). Consider first the set of 
functions f(q) which are square-integrable with 
respect to q. 

(1Ifll,)2 == L:lf(qWdq < 00. (2.15) 

This set of functions forms a Hilbert space Jel with 
respect to the norm II! II'. Let us pick a pair of 
functions f±(q), each of which is an element of Jel. 
We will show that they determine a vector f in Jed' 
with a finite norm 11ft. Bothf+(q) andf-(q) can be 
written as Fourier transforms of other square-integrable 
functions: 

f±(q) = (27T)-i L: ei1J('i~(p) dp. (2.16) 

Substituting these in (2.12), we find that 

IIfll! = L: dP[IJ~(p)12L:e-ipqK+(q) dq 

+ If~(p)12L:e-ipqK_(q) dq} (2.17) 

This is valid if the indicated Fourier transforms of 
K±(q) exist and are well-behaved functions of p. 
We find in fact that these transforms do exist and 
have just the desired properties9 : 

L: e-ipqK±(q) dq = .u'(O')A±(p), 

A±(p) = ret - 0' + ip)ret - 0' - ip) 

x [cosh 7Tp ± sin 7TO'] > 0, 

.u'( 0') = (27T)-%23
(I-a) [r(20')r( 0' + t)jr( 0')] cos 7T0'. 

(2.18) 

The asymptotic behavior of A±(p) for large Ipl is 
given by 

A±(p) ____ const \pl-2a , (2.19) 
Ipl-oo 

so that the finiteness of the norm II! II a is guaranteed 
because (2.15) implies that 

L:lf~(P)12 dp < 00. (2.20) 

The positive definiteness of the functions A±(P) 
implies the positive definiteness of the kernels ~(q). 
The asymptotic behavior of A±(P) as exhibited by 
(2.19) is analogous to the behavior of the numbers 
Am(O') in (2.4) for large Iml. Just as we were able to 
conclude that the space Je of square-integrable 
functions of cp is contained as a dense subset in Jea , 

we may now conclude that the set Je1 of all square­
integrable functions of q is a dense subset of both 

• Bateman Manuscript Project, A. Erde\yi, Ed. (McGraw-Hill 
Book Company, Inc., New York, \953) 
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Je~+) and Je~-). With the aid of (2.12), or (2.17), we 
are led in a natural way to norms II/11~±) defined in 
Je~+) and Je~-), respectively. The space Jel is not 
closed with respect to either of these norms. Comple­
tion of Jel with respect to III II~+) yields the Hilbert 
space Je~+); and with respect to III II~-) it yields Je~-). 
Je~+)(Je~-» consists of all functions f~(p) (J':"(P» for 
which the norm III II~+)(III II~-», as defined by (2.17) 
and (2.18), is finite. The original space Je" is obtained 
as the direct sum of Je~-t-) and Je~-). 

The generator J2 is diagonal in the "p basis": 

[Jd]~(p) = p/~(p). (2.21) 

We see that the spectrum of J2 consists of all real 
numbers, with each eigenvalue appearing twice, as 
noted by Bargmann. Concerning the forms of Jo and 
JI in this basis, we argue in the same manner as in 
(A) and reach the result that, if a vector f is in the 
domain of Jo and JI , then its wavefunctions I± (P) are 
boundary values of analytic functions of p, possessing 
unique analytic continuations into the complex p plane, 
at least up to 1m p = ± 1. Then the wavefunctions 
of the vectors Jof and J J are given by 

[Jof]~(p) = ![p + i(a - t)]f~(p - i) 

+ Up - i(O' - i)]/~(p + i), 
[Jd]~(p) = ![p + i(O' - t)]f~(p - i) 

- Up - i(O' - t)]/~(p + i). 
(2.22) 

Conversely, Jo and J1 can only act upon vectors f 
whose wavefunctions f± (P) possess all these properties 
and are such that the right-hand sides of (22.2) 
represent normalizable wavefunctions. 

3. SUPPLEMENTARY SERIES OF VIR'S 
OF 0(3,1) 

The supplementary representations of 0(3, 1) are 
similar to the exceptional representations of 0(2, 1) 
in that they, too, are most naturally expressed in a 
space of functions with a nonlocal metric. 7 Let Jep 

be the Hilbert space of functions of a complex variable 
fa) with a finite norm IIfll p ' this norm being defined 
by 

IIJI/! = (j, f)p = I d2~'f d2~ f(~') Ie' - ~1-2+2Pf(~) 
0< p < 1. (3.1) 

[These functions fa) are not analytic functions of ~, 
but are complex-valued functions of the real and 
imaginary parts of ~. The integrations in (3.1) extend 
over the entire ~ plane.] Once again, the possible 
functions f(~) appearing in Jep will depend on p. 
If g is an element of SL(2, C) given by (LlO), it is 
represented by a unitary operator U(g) acting on Jep 

as follows: 

[U(g)f](~) = 1<5 + fJ~r2-2Pf (rx~ + Y). (3.2) 
t5 + fJ~ 

It is possible to write down the differential operators 
that represent the generators Li and Ni of 0(3, 1), in 
terms of ~ = x + iy. However, we shall not do so 
here; we merely note that they may be obtained from 
the formulas given in (B) by the formal replacement 
p-ip. 

It is useful to analyze first some properties of these 
VIR's with respect to the SU(2) subgroup. For this 
purpose, exactly as in (B), we express the VIR in a 
space of functions defined on a unit sphere in three 
dimensions. The variable ~ is related to the angles 
0, q; on the sphere by 

~ = x + iy = cot ~ ei<l'; 0 "" 0 < 7T, 0 < m < 27T. 2 ..::. - _'r_ 

(3.3) 

The function fa) is related to a function /(0, q;) via 

[ 
0J2+2P fa) = 2 sin 2 leo, q;). (3.4) 

Then the scalar product of two elements f and h in Jep 

becomes 

(j, h)p = 2-I
-
p II d cos 0' d cos 0 dq;' dq; 

x leo', q;')Lp(O'q;', Oq;)1i(O, q;), 
Lp(O' q;', Oq;) 
= [l - cos 0' cos 0 - sin 0' sin 0 cos (q;' _ q;)]-l+P. 

(3.5) 

The generators acting on/(O, q;) are as folIowsIo : 

L .' 0 + . to 0 
1 = 1 sm q; 00 1 cos q; co oq;' 

L . 0 + . . to 0 
2 = -I cos q; - 1 sm q; co - , 

00 oq; 

La=-i~; 
oq; 

NI = - i(p + 1) sin 0 cos q; (3.6) 

. 0 o. sin q; 0 + 1 cos cos q; - - 1 -- -
00 sin () oq; , 

N2 = -i(p + 1) sin 0 sin q; 
. (). 0 . cos q; 0 + 1 cos sm q; - + 1 -- - , 

00 sin 0 oq; 

Na = - i(p + 1) cos 0 - i sin 0 ~ . 
00 

10 The expressions obtained for LI are exactly the same as for the 
angular momentum of a single particle in quantum mechanics. If 
R denotes a spatial rotation, then the unitary operator U(R) has a 
very simple effect on the functions j«(),rp): [U(R)/r«(),rp) = 
i[R-l«(), rp)]. 



                                                                                                                                    

UNITARY REPRESENTATIONS OF THE LORENTZ GROUPS 423 

Equations (3.5) and (3.6) are the analogs to (2.1) 
and (2.3). 

The spectrum of VIR's of SU(2) contained in this 
VIR of 0(3, 1) is made explicit by an orthogonal­
function expansion of the kernel Lp«()' cp', ()cp) in terms 
of eigenfunctions of the differential operators L2 
and La. The details of this expansion are given in 
Appendix A. Here we quote the result, which is as 
follows for 0 < p < 1: 

L «()'m' ()m) = 2P+l7T rep) 
P T' T r(1 _ p) 

X i I ru - p + 1) Y?,«(), cp) Y;"(()" cp'). (3.7) 
I=Om=-1 r(l + p + 1) 

Notice these two features: (i) the I-dependent coeffi­
cients of the spherical harmonics are always positive 
for 0 < p < 1; (ii) for large values of I, these coeffi­
cients go to zero because 

r(l - p + 1) --+ const 1-2P. (3.8) 
r(l + p + 1) 1 .... 

00 

These properties are exactly similar to the case of 
0(2, 1), where the coefficients Am(a) , relating to a 
Fourier-series expansion of the kernel La(CP' - cp), 
tended to zero for Iml- 00. Let now Je be the space 
of all functionsj«(), cp) that are square-integrable over 
the unit sphere in the following sense: 

I\JI12 == 50" sin () d() L2lT dcp Ij«(), cp)12 < 00. (3.9) 

The space Je forms a Hilbert space with respect to the 
norm II J II, and any element J in Je possesses an 
expansion in terms of the spherical harmonics: 

co +1 
J«(). cp) = I L Ilm Y '?'«(), cp), 

1=0 m=-I 

flm = 50" sin () d() f02" dcp Y;n«(), cp)j«(), cp), (3.10) 

00 +1 

IIJII
2 = I ! I/Iml 2 < 00. 

I=Om=-! 

Such a functionJ«(), cp) automatically belongs also to 
Jep because, by virtue of (3.7), (3.8), and (3.10), it 
has a finite norm II/lip in Jep : 

II I 112 - 7T rep) ~ ~ ru - p + 1) 2 
P - r(1 - p) f';: r(l + p + 1) I/lml < 00. 

(3.11) 

The space Je is thus contained as a dense subset in 
Jep ; Je is not closed with respect to the norm 11/ II , 
but yields Jep on completion with respect to it. Vect:rs 
in Jep corr,espond to all sequenceslzm for which (3.11) 

is finite, while vectors in Je correspond to those 
sequences for which the expression appearing in 
(3.10) is also finite. We can identify, from (3.7), the 
functions of (), cp which represent the states 11m) of 
(1.16). They are, apart from phase factors and an 
over-all normalization, given by 

1
1m) ->- [r(l + p + 1)Jt ym(o ). (3.12) 

r(l - p + 1) I , cp 

All the properties elucidated above, relating to the 
decomposition of the VIR's under SU(2) , are true 
for all p in the range 0 < p < 1 and are included here 
to display the similarity to the properties of the 
exceptional representations of 0(2, 1). Another reason 
for exhibiting these properties is that we would now 
like to achieve the decomposition of the VIR under 
the noncompact subgroup 0(2, 1) by a very similar 
method. As a first step, we adopt the approach in (B), 
and change variables from the unit sphere to two 
planes. We define radial and polar coordinates 
r, cp as follows: 

7T 0 r o < 0 < -: tan - = tanh - . 
- -2 2 2' 

'!!. < () < 7T: 
2 - -

-0 r 
cot - = tanh -' 00 > r _> O. 

2 2 ' 

(3.13) 

The angle coordinate cp remains unchanged. According 
to (3.13), the upper and the lower hemispheres get 
mapped onto one plane each. Still following the 
lines of (B), we define one function on each plane to 
replacej(e, cp): 

Nr, cp) = [cosh r]-l-pj(e, cp): 0 S e S 7T/2 (3.14) 

Nr, cp) = [cosh rr1
-

pj(e, cp): 7T/2 S () S 7T. 

As w,e should expect, the scalar product (j, h)p 
contams cross terms between fl(r, cp), h2(r, cp), etc. 
These are removed by working with the combinations 
f±(r, cp): 

f±(r, cp) = H/l(r, cp) ±f2(r, cp»). (3.15) 

These functions,f+(r, cp) andLer, cp), correspond to 
functionsJ«(), cp), which are even and odd respectively 
under the substitution () - 7T - (). Then the scalar 
product is 

(j, h)p = 2-1
-

p LX) 100 
sinh r' sinh rdr' dr flT f" dcp' dcp 

[f+(r', q/)K+(r', r, cp' - cp)h+(r, cp) 

+ f_(r', cp') K_(r', r, cp' - cp)h_(r, cp)], 
K±(r', r, 1p) = [1](r', r, 1p) - 1]p-l 

± [1](r', r, 1p) + l)P-l, 

1](r', r, 1p) = cosh r' cosh r - sinh r' sinh r cos 1p. 

(3.16) 
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Subject to verification of the fact that ~ are positive 
definite kernels, we see that Jep has been expressed 
as the direct sum of two orthogonal subspaces Je~+) 
and Je~-), corresponding, respectively, to vectors in 
Jep withf-(r, q;) = 0 andf+(r, q;) = O. 

The differential operators for L" N, acting on 
f±(r, q;), written as a column vector 

are 

La= -i~@l, oq; 
Nl = [i cos 'P.§... - i sin q; coth r ~J @ 1, or oq; 
N2 = [i sin 'P.§... + i cos q; coth r ~J @ 1, or oq; 

Ns = [ -i(p + 1) cosh r - i sinh r :rJ @ O'l' 

Ll = [i(P + 1) sin q; sinh r 

. . h 0 + . cos q; 0 ] + 1 SIn q; COS r - 1 -- - @ O'l' or sinh r oq; 
L2 = [ -i(p + 1) cos 'P sinh r 

. h o+.sinq;OJ - 1 cos q; cos r - 1 -- - @ O'l' or sinh r oq; 

(3.17) 

One can check in either of two ways that the subgroup 
0(2,1) generated by La, Nl , and N2 leaves Je~+) and 
Je~-) invariant. One way is to realize that these three 
generators, as given in (3.6), are invariant under the 
replacement () -- 1T - (). Another way is to work out 
explicitly the form of the unitary operator U(g) for g, 
an element of 0(2, I). Then one sees that, for any 
such g, 

(3.18) 

the arguments rg, q;g of f± on the right-hand side 
being some definite functions of r, q;, and g.ll In 
particular, this "change of argument" is the same for 
both functions f+ and f-, and there is no factor 
multiplying the functions f± on the right-hand side of 
(3.18). 

The decomposition of the subspaces Je~+) and Je~-) 
into subspaces irreducible under 0(2, 1) cali now be 
achieved by an orthogonal function expansion of the 
kernels K±(r', r, q;' - q;) in terms of eigenfunctions of 
Q and La. This would be analogous to (3.7). It should 
be pointed out that although the subgroup acts "in the 

11 This is analogous to the situation described in Ref. 10. 

same way" on functions f+(r, q;) and f_(r, q;), as 
evidenced by (3.18), this does not mean that the 
representations of 0(2, 1) appearing in Je~+) and Je~-) 
are the same. This is just because the scalar products 
defined in Je~+) and Je~-) are different. The differential 
operator Q is 

Q = _[ 0
2 

+ coth r.§... + _1_~] @1,(3.19) or2 or sinh2 r oq;2 
and the relevant eigenfunctions of Q and La are 
generalizations of the spherical harmonics nn«(), q;) 
for complex I and with cos () replaced by cosh r. The 
decomposition of the kernels ~ in terms of these 
eigenfunctions is carried out in Appendix A. Since the 
results of this decomposition are very different for 
0< p ~ t and for i < p < 1, we now discuss these 
two cases separately. 

Case I: 0 < p ~ i. 
For such values of P (notice that p = i is included), 

we find 

K (r' r ro' _ ro) = ~ r(p) 
± , 'r r 1T r(1 _ p) 

X l'" m:~oo dSS tanh 1TSA.±(S) 

A.±(S) = rei - p + is)r(i - p - is) 

X [cosh 1TS ± sin 1Tp] > 0, 
Y~!+is(r, q;) 

t 
= [cOS~ 1TS r (i + is - m)r(t - is - m)] 

X eim<pP~1~is(cosh r). (3.20) 

The positive definiteness of the kernels K± is thereby 
established. We See also that the eigenfunctions of Q 
appearing in the decompositions of K± correspond to 
the following eigenvalue spectrum of Q; 

Q = t + S2, 0 ~ S < 00. (3.21) 

This spectrum is the same for both decompositions, 
K+ and IC. Therefore we have the following: 

Theorem I: VIR's of 0(3, 1) belonging to the 
supplementary series, for values of the parameter p 

in the range 0 < p ~ t, decompose into direct 
integrals of VIR's of 0(2, I) belonging to the con­
tinuous nonexceptional (integral) class, with the 
spectrum of the Casimir invariant Q of 0(2, 1) 
being ! ~ Q < 00. In the decomposition, every VIR 
of 0(2, 1) of the llbove-mentioned class appears twice. 



                                                                                                                                    

UNITARY REPRESENTATIONS OF THE LORENTZ GROUPS 425 

Every VIR of 0(2, 1) of the continuous non­
exceptional integral class appears once in the subspace 
Je~+) and once in Je~-). Notice that the exceptional 
representations of 0(2, 1) are not found in the 
supplementary representations of 0(3, 1) for 0 < 
p ::::;; t. We discuss now some properties of the kernels 
K± and the subspaces Je~±): 

According to the statements made in Sec. I, the 
matrix elements of VIR's of 0(2, 1), which belong to 
the continuous nonexceptional and the discrete 
classes, span the Hilbert space of square integrable 
functions on 0(2, 1). The functions Y~l+i8(r, q;), 
appearing in (3.20), are actually special cases of these 
matrix elements and belong to the continuous non­
exceptional representations. For these matrix elements, 
the completeness and orthonormality properties may 
be stated in the following way. Let J\, be the Hilbert 
space of all functions f(r, q;) which have finite norms 
III II J\,' this being defined by 

Il!IIk == l'~ sinh r dr Lb 

dq; If(r, q;)1 2
• (3.22) 

Then every such functionf(r, q;) may be expanded in 
terms of Y~l+i8(r, q;): 

fer, q;) = mtgoo Loo d88 tanh 7T8fm(8)Y~!+i8(r, q;), 

fm(8) = (27T)-1Loo sinh r dr 

X f"dq; Y~~tH8(r, fIJ)f(r, q;). (3.23) 

The norm off is given by 

Ilfllk = m!:oo Loo d88 tanh 7T8 Iim(8)12. (3.24) 

If we examine the behavior of the weight functions 
A±(8) appearing in the kernels K±, we find that they 
go to zero for large 8 [cf. (2.18) and (2.19)]: 

A±( 8) ~ const 8 -2P. (3.25) 

Furthermore, ),,+(8) is finite for every finite 8 in the 
range 0 ::::;; 8 < 00 only if 0 < p < t, while ),,_(8) is 
finite for finite 8 if 0 < p ::::;; t. If p = t, ),,+(8) goes 
like 8-2 near 8 = O. We conclude that if 0 < p < t, 
every element f in the space J\, is also an element of 
Je~+)as well as of Je~-), with finite norms III II ~±): 

{lIfII~±)}2 = 2P rep) 
7T r(1 - p) 

(3.26) 

Consequently, for 0 < p < t, the space of functions 

J\, is dense in both Je~+) and Je~-). Completion of J\, 

with respect to III II~+) yields Je~+), with respect to 
III II~-) yields Je~-). If p = t, J\, continues to be a 
dense subset of Je~-), but not of Je~+). [There exist 
elements of finite norm in J\, which are not of finite 
norm in Jei+)'] In any case, for all p in the range 
o < p ::::;; t, Je~+)(Je~-) consists of all sequences of 
functions f+.m(8) [/_.m(8)] which have finite norms 
II/+II~+)(II/_II~-) as defined by (3.26). 

The operators Q and L3 are diagonal in the "8, m 
basis," and, denoting the transforms of f±(r, q;) 
according to (3.23) by f±.m(8), we have 

[Qj]±.m(8) = (1 + 82)f±.m(8), 

[Laf1±.m(8) = mf±.m(8). 
(3.27) 

In this basis, the action of the generators N1 and N2 
is known from the structure of the VIR's of 0(2, 1). 
As for the remaining generators N 3, L 1 , and L 2 , we 
refer the reader to the discussion given in (B) for the 
principal series of VIR's of 0(3, 1). We just remark 
here that, for example, N3 has for its domain the 
vectors f whose wavefunctions f±.m(8) are analytic 
functions of 8; and the vector N J has the following 
wavefunctions: 

[Na!]±.m(8) 

= [m2 
- (t + i8)2]! 8 ~~(~ ~ t) f"f.m(8 - i) 

- [m 2 _ (t - i8)2]! 8 + i(p + t)f (8 + i). 
2(8 + i) "f.m 

Case II: t < p < 1. 
(3.28) 

We turn next to the remaining VIR's of 0(3, 1) 
of the supplementary series. In this case, the de­
composition of the kernels K± yields some important 
extra terms. We quote first the result derived in 
Appendix A, and then explain the need for these new 
terms. We find 

K+(r', r, q;' - q;) 

= 2
P rep) ~ roo d88 tanh7T8A+(8) 

7T r(1 - p) m=-", Jo 
Y m (' ') ym ( ) 2-P r rep) x -1+i8 r, q; -t+;8 r, q; + ,,7T rep _ t) 

00 

x I Y;:'_1(r', qi') Y;:'_1(r, q;), (3.29a) 
m=-oo 

K_(r', r, fIJ' - q;) 

= 2
P rep) ~ r'" d88 tanh 7T8.L(8) 

7T r(i - p) m=-oo Jo 
X Y~1+i8(r', q;')Y~l+i8(r, q;). (3.29b) 
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The weight functions A:l:(8) are the same functions of 
8 and p as before [cf. (3.20)]. Once again the positive 
definiteness of the kernels is evident. 

Let us explain briefly the appearance of extra terms 
in (3.29a). These decompositions have been made by 
starting with an expansion of the function 

in a series of Legendre polynomials P1(p) and then 
applying the Watson-Sommerfeld-Regge transform 
to the expansion. Thus this function is expressed in 
terms of an integral in the complex / plane, with a 
"background term" where the integration is along the 
line Re / = -t, together with Regge-pole type terms. 
Once the function has been expressed in this way, one 
may allow p to vary in the range 1 ::::;; p < 00. Taking 
the limits ,-- ± 1 and setting p = 'f}(r', r, cp' - cp) 
[cf. (3.16»), the decomposition of K:l: is achieved. 
Now for small enough p, namely 0 < p ::::;; t, the 
behavior of the function (3.30) as p -- 00 is such 
that this behavior can be reproduced correctly by the 
background term alone. This is the result of Case I as 
treated above, and the background term represents 
precisely the continuous nonexceptional UIR's of 
0(2, 1). However, if p increases beyond t and lies in 
the range ! < p < 1, then the background term 
cannot account for the asymptotic behavior of 
(3.30) for large p. Indeed, one finds a "Regge pole" 
at the point I = p - 1 in the complex I plane, and this 
pole contributes the extra terms in (3.29a). 

The interpretation of this Regge pole is quite clear: 
it represents the UIR of 0(2, 1) of the exceptional 
class corresponding to the value a = p - t. [Notice 
that the open interval! < p < 1 corresponds precisely 
to the range 0 < a < I, which occurs when exceptional 
UIR's of 0(2, 1) exist.] It is also natural that this pole 
term contributes only to K+ and not to L; the 
behaviors of K+ and K_ for large 'f}(r', r, cp' - cp) 
are different. 

We express these results by means of the following: 

Theorem II: UIR's of 0(3, 1) belonging to the 
supplementary series, for values of the paramet~r p 
in the open interval l < p < I, decompose mto 
direct integrals of UIR's of 0(2, 1) belonging to the 
continuous nonexceptional (integral) class, together 
with a single UIR of 0(2, 1) of the exceptional class, 
corresponding to the parameter a = p - t. Every 
UIR of the continuous nonexceptional class appears 
twice, while the exceptional UIR appears once; a~d 
the spectrum of Q consists of the discrete pomt 
Q == 1 - (p - })2 and the region of the real line 

1 ::::;; Q < 00, the latter eigenvalues appearing twice 
each. 

The subspace Je~-) contains exactly the same UIR's 
of 0(2, 1) as in Case I-namely, every nonexceptional 
continuous class UIR appears once. As before, it 
follows that the space J\, is dense in Je~-) and that J\, 
yields Je~-) on completion with respect to the norm 
II/lip restricted to Jer). As in (3.26), let us write this 
norm defined in Je~-) as 1If1l~-). Then Jer) consists of 
all sequences of functions/_.m(8) for which the norm 
11/-11 r) defined in (3.26) is finite. 

The subspace Je~+) contains every nonexceptional 
continuous class UIR of 0(2, 1) once, and, in addition, 
contains the single exceptional UIR with a == p - t. 
Since the exceptional UIR corresponds to a discrete 
point in the spectrum of Q, the corresponding 
vectors in Je~+) must have finite norm. The question 
whether or not .3\, appears as a dense subset of Je~+) 
is a little harder to answer. The problem is that the 
decomposition of K+ as given in (3.29a) is not always 
valid; i.e., in order to use it to compute the norm of a 
vector I+(r, cp) in Je~+), one has to interchange the 
order of the integrations involved, and this may not 
always be justified. One can analyse the structure of 
Je(+) in the following way. We have proved that the 
sPace Je of all square-integrable functions /(0, cp) 
forms a dense set in Jep • Restricting oneself to the 
subset of Je made up of functions with the property 

/(0, cp) =/(TT - 0, cp), 

one is led, via (3.14) and (3.15), to a set of functions 
I+(r, cp) which form a dense subset ~ of Je~+). That 
/(0, cp) belongs to Je may be expressed in the following 
manner: 

L«>Sinh r dr Lb 

dcp[cosh r]2P lf+(r, cp)12 < 00. (3.31) 

This implies that both I+(r, cp) and [cosh r]PI+(r, cp) 
are elements in .3\" so that the vectors I+(r, cp) in ~ 
form a proper subset of .3\,. 

For the vectors of Je(+) that lie in ~, we can prove p 

that the decomposition (3.29a) of Kr may be used. 
Since any I+(r, cp) in ~ is also in.3\, and since A+(8) -- 0 
for large S, it follows that 

(3.32) 
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On the other hand, since [cosh r]Pf+(r, rp) also belongs 
to J(" we can go further. Even though the functions 

Yp~ir, rp), 1 < p < 1 

do not belong to J(, (see Sec. 1), the functions 

[cosh rrpYp~ir, rp) 

do. Consequently, for elements f+(r, rp) in ~, using 
the fact that [cosh r]Pf+(r, rp) belongs to J(" we have 

m=-oo 

/:.-;;) = (2rrr1 [00 sinh r dr [2" drp Yp~lr, rp)f+(r, rp). 
.10 Jo 

(3.33) 

(3.32) and (3.33) prove that the decomposition of the 
kernel K+ given in (3.29a) definitely can be used for 
the dense subset ~ in Je~+). Combining (3.32), (3.33), 
and (3.29a), we may say the following: Every vector 
f+ in the dense subset ~ of Je~+) is specified by the 
following quantities: 

f+ - {f+,m(S),Jl~;.l)}. (3.34) 

f+.m(S) and f5::;;.1) are obtained via (3.32) and (3.33) 
from the functionf+(r, rp) corresponding to the vector 
f+. [This function f+(r, rp) obeys (3.31).] The norm 
"f+"~+) off+ is given by 

{"f+,,~+)}2 = 2P 
r(p) I [00 dSS tanh rrS 

rr r(1 - p) m Jo 
X )" (S)lf (S)12 + TPrr! rep) ~lf<p-1)12. 

+ +,m rep _ t) -; +,m 

(3.35) 

The completion of ~ with respect to "f+"~+) yields 
Je<+) 

P • 

The nature of Je~+) will be revealed by the process 
of completion of~. We must first examine the prop­
erties of the vectors f+ in ~. The fact that, for an 
elementf+ of~, the function 

[cosh rJPf+(r, rp) 

also belongs to J(, may be used to reach the following 
conclusions regarding the quantities f+ m(S) and 
:';.1) of (3.34): . 

(i) f+ m(S) is the boundary value as t - 0 of an 
analytic function f+.m<') of ~ = S + it (boundary 
value in the sense of the limit in the mean); this 
analytic function has so singularities in the open strip 
- p < t = 1m ~ < p. 

(ii) For any fixed value of 1m , = t in this range, 

I roo dSS tanh rrS If+.m(S + it)12 < 00. (3.36) 
m Jo 

(iii) The quantities j<p-1) are determined in terms of +.m 
these analytic functions by 

f <p-1) f ( .) +,m = +,m -}.t] , (1 = P - 1. (3.37) 

These statements follow in a straightforward way 
from an examination of the behavior of the functions 
Y~hi8(r, rp) for large values of r, and from the fact 
that these are entire functions of S. 

Thus if one computes the norm "f+"~+) of a vector 
f+ in ~ according to (3.35), one finds that the two 
parts f+.m(S) and f<:,-;,.l) of f+ are not independent; 
in particular, because of (3.37), there can be no vector 
in ~ for whichf+,m(S) vanishes while f5t,;.l) does not. 
Nevertheless, on completion of ~ with respect to 
"f+"~+l, one finds the following structure for Je~+) 12: 
Every vector f+ in Je~+) consists of a sequence of 
functionsf+.m(S) and a sequence of complex numbers 
P:,-;;) , subject only to the condition that the norm 
"f+II~+) be finite-"f+II~+) defined in, (3.35). For a 
general vector f+ in Je~+), there is no relation between 
these functions of S and the complex numbers f5t,;.l) ; 
to "recover" all of Je~+), one must choose these 
independently of one another. This means that Je~+) 
can itself be split up into a direct sum of two Hilbert 
spaces Je<+) and Je<+): 

p,e p,d 

Je<+) = Je<+) EEl Je<+) . 
p p,e p,d (3.38) 

The subscripts c and d refer respectively to the 
continuous and the discrete eigenvalues of Q. Vectors 
f+ in Je~;~ correspond to all sequences of functions 
f+.m(S) with 

{llf+ll<:,n2 = I roo dSS tanh rrS)"+(S) If+,m(S)12 < 00, 
m Jo 

(3.39) 

while vectorsf+ in Je~;J correspond to all sequences of 
complex numbersf!:,-;;) with 

(3.40) 
m 

This structure for Je~+) is proved by showing that, on 
the one hand, if one assumes Je~+) to be characterized 
in this way, then ~ is dense in Je~+); and, on the other 
hand, we know that such a Je~+) is in fact a Hilbert 
space. [The argument is outlined in Appendix B.] 

The question whether and, if so, in what way J(, is 
contained in Je~+) is now answered as follows: J(, is 
contained as a dense subset in Je~~l only. This follows 
from the expression (3.39) for the norm in Je~;l. 

The subspace Je~-) of Jep has a more or less uniform 
behavior for all p in the range 0 < p < 1. In all 

12 The author is indebted to Dr. N. J. Papastamatiou and Pro­
fessor L. O'Raifeartaigh for help in clarifying this situation. 
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cases Je~-) contains J(, as a dense subset and carries 
only the continuous nonexceptional UIR's of 0(2, 1). 
On the other hand, for 0 < p < !, Je~+) carries only 
the continuous nonexceptional UIR's of 0(2, 1) and 
contains J(, as a dense subset. For! < p < 1, Je~+) 
breaks up into two orthogonal subspaces Je~:! and 
Je(+a) . The former again carries all the continuous non-

p, 
exceptional UIR's of 0(2, 1), and contains J(, in a 
natural way as a dense subset. Je~:,J carries the single 
exceptional UIR of 0(2, 1) corresponding to the value 
(f = p - t. On Je(+J, Q reduces to the number p, 

t - (p - t).2 For p = !, Je~+) carries the continuous 
nonexceptional UIR's of 0(2, 1) only, but does not 
contain J(, as a dense subset in any natural way. 

It would be desirable to check by direct calculation 
whetherthewavefunctions Y;;'_l(r, cp)and Y~J..Li8(r, cp) 
are orthonormal with respect to the kernel K+ of 
(3.16). If this could be done, then the exceptional 
UIR's of 0(2, 1) would appear somewhat less strange. 
Even though orthonormality of these functions does 
not obtain in the ordinary sense, as explained in 
Sec. 1, we might have orthonormality with respect to an 
invariant positive definite "two-point measure" on 
0(2, 1). If indeed this is the case, we would then be 
able to discuss in these UIR's also the action of the 
generators L1 , L2 , N 3 in the basis where Q and L3 
are diagonal. 

CONCLUSION 

We have discussed the reduction of the exceptional 
class of unitary representations of 0(2, 1), and of the 
supplementary series of unitary representations of 
0(3,1), under the noncompact subgroups 0(1, 1) 
and 0(2, 1), respectively. In the former case, we 
recovered the result that the spectrum of the generator 
of 0(1, 1) covers the real line twice. In the latter case, 
we found that the reduction gives different results 
depending on whether the parameter p labeling these 
representations obeys 0 < p ::;; t or ~ < p < I. In 
the first case, the only representations of O(~, I) that 
are present are those of the continuous nonexceptional 
class, and each of these occurs twice. In the second 
case, in addition to this double occurrence of the 
continuous nonexceptional representations, we have a 
single exceptional unitary representation of 0(2, I). 
The value of the parameter (f describing this excep­
tional representation is related to p by (f = p - t· 

In (B) we have shown that the principal series of 
UIR's of 0(3, 1) contains only continuous non­
exceptional and discrete class UIR's of 0(2, I). It is 
gratifying that the exceptional UIR's of 0(2, 1) have 
been found in part of the supplementary series of 
UIR's of 0(3, I), since, on general grounds, one 

knows that every UIR of 0(2, 1) must appear in 
some UIR of 0(3, I). 

It is also interesting that, in the problem considered 
here, one is able to associate a unitary representation 
of 0(2, I) with a Regge pole in the complex I plane in 
an unambiguous and concrete fashion. This pole 
moves with changing p, and corresponds to a unitary 
representation only when! < p < I. 

Lastly, we should draw attention to the problems 
mentioned at the end of Sec. 3. It seems likely that 
the complicated expressions for the scalar products 
in the relevant Hilbert spaces are necessary if we want 
a standard algebraic form for the generators in all 
classes of UIR's. [Compare, for instance, (2.13) with 
the similar equation in (A) for the generators of 
0(2, I) in the continuous and discrete representations.] 
It should be possible to write the scalar product in a 
simple way, but with different-looking differential 
operators for the generators in each class of UIR's. 
We hope to treat these questions elsewhere. 
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APPENDIX A 

We outline here the derivation of Eqs. (3.7), 
(3.20), and (3.29). Consider the function L(fl) defined 
by 

L(ft) = a - fl)-1+P; -1::;; fl::;; I, lsi> I. (AI) 

We can expand L(ft) in a series of Legendre poly­
nomials for fl in the indicated range: 

I en 

L(fl) = - 2,(21 + 1)a l(s, P)PI(fl ), 
2 'c~o 

als, p) = f1 dIiP1(1I)(S - 1I)-1+P
• 

(A2) 

Using the standard property of Legendre functions 
of the second kind,13 that 

QzCI; + iE) - QI(1i - iE) = -i7TPI(II) , 

-I ::;; II ::;; I, (A3) 

we can express the coefficients a1 in terms of a contour 
integral in the complex II plane: 

13 This is derived easily from Neumann's formula, Ref. 9, p. 154. 
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FIG. I 

The contour C1 is given in Fig. 1; one can now 
deform the contour C1 into the contour C2 because 
the behavior of Q!(~) for large I~I permits the 
neglect of the contribution from infinity, and because 
there are no other singularities of the integrand 
except a branch point at Ii = ~: 

aLa, p) = .!..! dIiQL(h)(~ - Iir1+p. (AS) 
'TT j02 

On the contour C2 , Ii - ~ is a real positive number. 
By keeping track of the phase of the integrand while 
deforming the contour C1 into C2 , we find 

aLa, p) = ~ sin 'TTP roodIiQL(Ii)(h - OP-l. (A6) 
'TT J, 

We are interested in the range 0 < p < 1 for p. For 
this set of values of p, the integral appearing in (A6) 
can be evaluated explicitly, 14 and we finally get 

aL(~' p) = ~ sin 'TTp(~2 - 1)p/2ei"pr(p)Q-;-p(~). (A7) 
'TT 

We can now write (A2) in the compact form 

(~ - f-l)-1+P 

il1P 0::> 

= e a2 _ ly/2 ~ (21 + 1)P1(f-l)Q-;-P(~), 
r(1 - p) L=O 

0< p < 1; -1 < f-l < 1, I~I > 1. (A8) 

For p ----+- 0, we recover the well-known formula due to 
Heine. 

(A8) leads directly to Eq. (3.7) of the text. We 
first take the limit ~ ----+- 1 through values greater 
than unity, and then identify f-l to be 

f-l = cos ()' cos 0 + sin 0' sin () cos (q/ - cp). (A9) 

This gives, using the notation of (3.5), 

Lp(O' cp', (}cp) 

= 2P-l rep) 1(21 + 1) ru- p + 1) 
r(1 - P)I=O r(l + p + 1) 

x PL(cos (j' cos (j + sin (jJ sin (j cos (cp' - cp)). (AlO) 

14 Reference 9, p. 160, Eq. (31). 

An application of the spherical-harmonic addition 
theoreml5 then gives (3.7). 

The partial wave expansion (AS) is not appropriate 
for large values of f-l, and therefore we apply the usual 
Watson-Sommerfeld-Regge transform to it. We 
first write it in the form of a contour integral in the 
complex I plane: 

a - f-l)-l+p = e
i1TP a2 _ 1)P/21.! (21 + 1) dl 

reI - p) , 2i jo sin 'TTl 

x PtC -f-l)Q-;-P<,). (All) 

The contour C encircles the positive real I axis, 
running from + 00 to 0 above it, and from 0 to + 00 

below it. The poles of the function Q"/P(~) lie at the 
pointsl6 

1- p = -1, -2, -3, ... , (AI2) 

and so, as long as p is in the open interval 0 < p < 1, 
we can always make the contour C go around the 
origin I = 0 without going through these poles. If we 
now try to deform the contour C into the straight line 
1= -t + is, parallel to the imaginary axis, we see 
from (AI2) that we will encounter no poles of the 
integrand in doing so, for 0 < p :5: t. Even for 
p = !, the (simple) pole of Q"/f at I = -t is cancelled 
by the factor (21 + 1) in (All). Therefore we get 

o < p :s; t: a - f-l )-1+p 

= ei"P a2 _ 1)P/21. f-!-iOO (21 + 1) dl 
r(i - p) 2i -hioo sin 'TTl 

x Pl-f-l)Q-;-P<,). (A13) 

It is now permissible to replace f-l by - f-l and to allow 
f-l to vary in the range 1 :5: f-l < 00, since the right­
hand side has the correct asymptotic behavior in f-l. 
We replace I by -t + is and use standard properties 
of the Q-;-P functions in order to write (A13) asl7 

<' + f-l)-1+P = a2 
- 1)p/2 roo dS8 tanh 'TTS 

r(l - p) Jo 
x ret - p + is)r(t - p - is). 
x P -!+i8(f-l)p~hi8m. (AI4) 

All that remains to be done is to take the limits 
,----+- ±l. We find 

(~2 _ 1)P/2p~t+i8a) ~ 2P rep) sin 'TTP 
,-+1 'TT 

~ 2P rep) cosg 'TTS. (AlS) 
{-+-1 'TT 

15 Reference 9, p. 168. 
16 L. Robin, Fonctions spheriques de Legendre et fonctions spht!roi­

dales (Gauthier-Villars, Paris, 1958), Tome II, p. 88. 
17 The formula (AI4), valid for 0 < p ~ t, may be found also in 

L. Robin, Ref. 16, Tome III, p. 167. 
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Identifying", with nCr', r, q/ - rp) of (3.16), Such functions lex) may always be expressed in the 
form 

'" = cosh r' cosh r - sinh r' sinh r cos (rp' - rp) 

= nCr', r, rp' - rp). (AI6) 

Combining (A14) with (At5), we can expand the 
kernels K±(r', r, rp' - rp) of (3.16) in the following 
fashion: 

K±(r', r, rp' - rp) 

2P rep) f,c¢ . = - d88 tanh 1T811.±(8)P -t+iS 
1T r(I - p) 0 

x [nCr', r, rp' - If)]. (A 17) 

The functions A±(8) have been given in Eq. (3.20). 
Lastly, we use the addition theorem for the Legendre 
function appearing in (AI7),15 and this leads to the 
decompositions of the kernels K ± given in (3.20). 

In the case t < p < 1, all the above manipulations 
go through except for the fact that the integrand in 
(All) has a "Regge pole" at I = p - 1; and this 
contributes an extra piece to the right-hand side of 
(Al3) since now -t < p - 1 < O. Therefore we 
have, in place of (A13), 

t<p<l: 
ei1fP a2 - 1)p/2 f-!-ic¢ a - ",)-1+P = . 

r(I - p) 21 -hic¢ 

x (21 :t 1) dl PI( _",)Q"lP(,) 
SIn 1Tl 

+ 21- p r;;. rep) P _ (-11.). (AI8) 
Y rep _ t) P 1 r 

Notice the interesting fact that the pole-term has no 
dependence on ,. Also it has just the right behavior as 
'" -+ 00 to agree with the left-hand side. As before, 
we replace", -+ - "', identify", with n(r', r, rp' - rp), 
and take the limits ,-+ ± 1. Since the pole term is 
independent of " it contributes only to the kernel K+. 
Use of the addition theorem for the Legendre func­
tions15 then yields (3.29). 

APPENDIX B 

We outline the arguments that lead to the form for 
the Hilbert space Je,(+) derived from its dense subset 

P • 
1) in Sec 3, Case II. The presence of the varIable rp 
is irrelevant, and so we will omit it completely. The 
superscripts and subscripts (+) can be omitted also. 

Let J(, be the Hilbert space of function lex) which 
have finite norm in the following sense: 

II/IIk = LX) l/(x)1 2 dx < 00. (Bl) 

lex) = r dSS tanh 1TSP -hiS(x)/(S), 
,0 

Then, 

1(8) = CdxP-l+iS(X)](X). (82) 
• 1 

II/l1k = (c¢ d8S tanh 1TS 11(SW == 111(S)llk < 00, ./0 
(83) 

so that we can equally well consider J(, as the space of 
all functions I(S) with finite norms as computed 
according to (B3). 

Among all elements lex) in J(" those obeying the 
relation 

C x2p II(x)1 2 dx < 00, 
, 1 

(84) 

where p is some positive real number, certainly 
constitute a dense set 1)(0) in J(,. (We are interested 
only in t < p < 1.) How can the functions 1(8) 
corresponding to /(x) E 1)(0) be characterized? The 
behavior of P -hiS(X) for large x shows quite easily 
that if I( S) belongs to 1)(0), then: 

(i) 1(8) is the boundary value (in the I. i. m. sense) 
of an analytic function/(') of, = S + it, as t -+ 0; 
I( ') is free of singularities in the open strip - p < 
t < p. 

(ii) For any fixed value of t = 1m , in this range 

ic¢ dSS tanh 1TS 11(S + itW~ < 00. (B5) 

In general, if/(S) belongs to 1)(0), thenf[ -i(p - t)] 
may not vanish. [Note that, for p > t, the point 
S = -i(p - i) is contained within the strip of 
analyticity of I(S).] Let us define a subset 1)(1) in 1)(0) 

as follows: A vector I( S) belongs to 1)(}) if (i) f( S) 
belongs to 1)(0), and (ii) f[ -i(p - m = O. We first 
show that 1)(1) is also dense in J(,. If I(S) belongs to 
1)(0), the function 

I'(S) = 8 + .i(p - t) 1(8), 
S- + a2 a> p (86) 

clearly obeys all conditions to belong to 1)(I). If a 
vector h(8) is orthogonal to all elements of 1)(}), it 
must, in particular, obey the condition that 

roo

dSS tanh 1TS[h(8) S -2
i
(P -: l)]*/(S) = 0 (B7) Jo S + a 

for allf(S) in 1)(0). Together with h(S), the bracketed 
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expression in (87) is certainly an element of .3\, and, 
since :1)(0) is dense in .3\" it must vanish. It follows that 
h(8) must itself vanish and that :1)(1) is dense in .3\,. 

Let us now define another Hilbert space Je as the 
direct sum of a one-dimensional space Jed and an 
infinite-dimensional space Je e: 

Je = Je e E8 Jed· (88) 

Je e consists of all functions I( 8) for which 

II/II~ = iood88 tanh 7T8A(8) 1/(8)1 2 < 00. (B9) 

Then every vector I in Je corresponds to a pair 

(810) 

made up of a function 1(8) in Je e , and a complex 
number 11' with the norm in Je given by 

1If112 = .e" d88 tanh 7TsA(8) If(8)12 + If112. (811) 

The weight function .1.(8) in (89) and (811) is the real 
positive-definite function .1.+(8) of (3.20). We will use 
the fact that, as 8 ---+ 00, .1.(8) goes to zero like 8-2P• 

We define a subset :1) in Je as follows; a vector I 
lies in :1) if 

(i) I( 8) E :1)(0) , 

(ii) 11 = I[ -i(p - t)]· (812) 

Since 1(8) belongs to .3\, if it belongs to :1)(0), and since 
.1.(8) vanishes as 8 ---+ 00, the first term in (811) will 

be finite for such an 1(8). We will now show that :1) 
is dense in Je. We assume the existence of a vector 
h E Je orthogonal to all elements I of:1). It obeys 

C'd88 tanh 7T8A(8)h(8)f(8) + hd[ -i(p - t)] = 0; 
,0 

h = {h(8), hI}, f = {f(8), f[ -i(p - t)]} E:1). (813) 

Restricting 1(8) to the dense set :1)U) in .3\" we have 

.C d88 tanh 7T8A(8)li(8)f(8) = 0, f(8) E :1)(1). 

(814) 
Since h(8) belongs to Je, the integral 

.Cd88 tanh 7T8A(8) Ih(8W 

is finite; so then also is 

C'd88 tanh 7T8 IA(8)h(8)12 . 
• 0 

Hence .1.(8) h(8) belongs to .3\,. Since:1)(1) is dense in.3\, 
and .1.(8) is nonvanishing, then h(8) must vanish ident­
ically. We now go back to (813) and pick a vector I 
in :1) for which II is nonvanishing. Then we conclude 
hI = 0, or that the vector h vanishes identically. Thus 
the subset :1) in Je is dense in Je, and completion of:1) 
with respect to II/II of (811) yields Je. 

Following essentially these same arguments-but 
with the variable qJ included-we reach the conclusions 
stated in Sec. 3 of the text . 
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The perturbation expansions are derived by a technique which does not assume that convergent 
expansions exist. The theory is shown to be asymptotic, and criteria are developed to determine if a 
finite number of terms underestimates or overestimates the exact result for sufficiently small values of the 
coupling constant. 

I. INTRODUCTION 

Conventional derivations in time-independent per­
turbation theory of the eigenfunctions and energy 
eigenvalues l generally proceed by assuming that both 
have a power series expansion in the coupling constant 
and then finding the coefficients in the power series by 
setting the coefficients of arbitrary powers of the 
coupling constant equal to zero in SchrDrlinger's 
equation. This treatment is rigorous provided that the 
perturbation series converges. However, if the series 
has no radius of convergence, from a purely mathe­
matical point of view the derivation is meaningless. 
Nevertheless, perturbation theory is constantly used 
with no attempt made to show that the series actually 
converges. Furthermore, in those instances where it 
has been shown that the series diverges for all nonzero 
values of the coupling constant (i.e., quantum 

for any nonzero IX. 

Without even doing this calculation, it is clear that 
the series must diverge by the following line of 
reasoning. Suppose the series converged -for 0 S 
IX S ii. Then it follows from the theory of functions 
that the series will also converge for - ex S IX S O. 
But this is impossible since there are no solutions for 
the problem for negative IX. Hence the series must 
diverge for positive IX. Obviously the same reasoning 
can be applied to any potential, and we reach the 
conclusion that if by changing the sign of the coupling 
constant there are no bound-state solutions to the 
Schrodinger equation, then the perturbation series has 
no radius of convergence for either sign of the 
coupling constant. Since so many potentials have this 
property, it is worthwhile to investigate perturbation 

1 E. C. Kemble, The Fundamental PrinciplesofQllantum Mechanics 
(McGraw-Hill Book Company, Inc., New York, 1937), pp. 380-388. 

electrodynamics), the series is said to be asymptotic, 
which thus allows us to feel assured that taking only 
the first few terms gives a reasonably close approxi­
mation to the exact result. However, this conjecture 
does not follow directly from the mathematical 
derivation mentioned above, but rather it' arises 
intuitively from the notion that for a small enough 
coupling constant, the solution should approach the 
unperturbed solution. The divergence of the expansion 
should not be thought of as due to some subtlety 
involved in the interaction, as one might believe for 
quantum electrodynamics, but actually arises for a 
large class of simple single-particle potentials. For 
example, if we perturb a one-dimensional harmonic 
oscillator with an anharmonic term IXX4, the perturba­
tion series for the ground state energy diverges.2 

This follows from the fact that a typical term in the 
nth order 

theory by an alternate derivation which sheds some 
light on its asymptotic nature. 

We show that perturbation theory does yield asymp­
totic expansions. Furthermore, we show that for a 
sufficiently small coupling constant the expansion for 
the energy always improves in accuracy, if successive 
terms have the same sign; and if they have different 
signs, the exact result lies between the two partial 
sums. Finally, it is observed that the partial sums 
up through an odd order of perturbation theory do 
not necessarily overestimate the energy, as has been 
stated elsewhere. 

U. BASIC THEOREM 

Consider 
(I) 

• H. A. Kramers, Quantum Mechanics (Dover Publications, Inc., 
New York, 1964), p. 194. 

432 



                                                                                                                                    

ASYMPTOTIC PROPERTIES OF PERTURBATION THEORY 433 

where 
H(}') = Ho + }.H'. 

Then 

Otr1
(}.) / 01J"P'(}.) I and --'-

O}.1J+! ).=0 O}.ll ).=0 

are given by the results of perturbation theory, 
provided that all terms up to and including the 
(p + l)th terms in the perturbation expansion con­
verge, even though the perturbation series expansion 
may ultimately diverge for Ei(}.) and "Pi(}.)' 

Proof: Let CPn be the complete orthonormal set of 
functions satisfying 

HoCPn = E~CPn' (2) 

Then, from the completeness of the CPn, we can write 

"P;(}.) = ~ b~}(}.)CPn" 
n' 

and since as ), -->- 0, "Pi(}.) -->- 1>;, then 

b~)(J.) = bin' 
) ..... 0 

From here on the superscript i will be understood. 

(3) 

(4) 

Substituting Eq. (3) into Eq. (1), multiplying both 
sides of the resulting equation by CP~ , and integrating 
over all particle coordinates, we obtain 

}. ~ H~n.bn'(J.) = [E;(J.) - E~]bn(J.), (5) 
n' 

where 

H~n' == <1>nl H' ICPn')' 

Equation (5) is just the usual set of coupled equations 
for the bn(J.) that are conventionally solved by iteration 
to obtain the perturbation-theory series expansions. 

Equation (5) is sufficient to determine Ei(J.) and the 
{bn(J.)} , but it is more convenient to make use of 
Feynman's theorem,3 which in terms of the {b n } can 
be written 

~ b:(J.)bn.(J.)H~n' = oEl/.). (6) 
nn' A}. 

Then from Eq. (5), using (4), we have 

(7) 
provided only that 

exists, and from Eq. (6), 

H~. = OEP)/ 
.. oJ. ).=0' 

(8) 

which is just the usual perturbation-theory result. 

8 W. Pauli, Encyclopedia of Physics, S. Fliigge, Ed. (Springer­
Verlag, Berlin, 1958), Vol. V, Part I, p. 83. 

To obtain results to the next order we differentiate 
Eqs. (5) and (6) with respect to J. and obtain 

~ H' ,b .(J.) + }. ~ H' . Obn·(A) = OEi(A) b (J.) 
~ nn n ~ nn oJ. oJ. n 

and 

~ [Ob!(J.) b .(J.) b * (J.)Obn·(}.)]H' . = 02Ei(}.) 
f:;,. OA n + n oJ. nn OJ.2· 

(6') 

Then, letting J. -->- 0 in Eq. (5') and using Eqs. (4) and 
(7), we have 

H' . = (E~ _ EO) obn I 
no , n OA. ° n :F: i, 

provided only that 

~ H' ,obn • 
~ nn A}. 

exists (at this point it is necessary to assume that if Ei 

was originally degenerate, then the unperturbed wave 
functions have been chosen so that H:n = 0 for all 
n ¥= i), i.e., provided 

~,H~n.H~'i 
n' E~ - €~, 

exists, where the prime on the sum means i = n' is 
omitted. (Note: Since 

I b;(J.) I 2 = 1 - ~ I bn(}') I 2, 
n*i 

then differentiating with respect to J. and using bn(A) -->-

0, we obtain (obi/oJ.)io = 0.) But this is just the second­
order correction to bn in perturbation theory. Hence 
if the second-order correction to bn exists in perturba­
tion theory, then 

Obnl H~; 
a;: ).=0 = E~ - E~ n ¥= i, (9) 

which is, of course, just the usual perturbation-theory 
result. Furthermore, from Eqs. (6') and (9), 

~' H:n·H~'i = ! 02Ei~J.) I ' 
n' Ei - En' 2 oJ. ).=0 

(10) 

provided only that the sum exists. 
Higher-order terms may be obtained by differ­

entiating (5') with respect to J.. Then 

2 ~ H' . obn, + J. ~ H' ,o2bn • 
~ nn A}. ~ nn OJ.2 

= 02E;(J.) b + 2 OElJ.) obn + [E.(J.) _ EO] o2bn (5") 
OJ.2 n A}. A}. , n OJ.2 . 
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Letting)" - 0 and using Eqs. (4), (7), (8), and (10), 
we obtain 

! o2bn I = Z' H~n,H~'i _ H;iH~i (11) 
2 0),,2 .. =0 n' (EiO- E!')(E~ - E~) (E~ - E~)2> 

provided only that ~n' H~n,(02bn.jo),,2) converges for 
),,-0. 

In order to evaluate the sum we first obtain from 
~n Ibn l

2 = I (choosing bi real) that 

o2bi I ~' H~n,H~'i 
0),,20= - n' (E~-E~,)2' 

Then ~n' H~n,(02bn.jo),,2) can be evaluated, and it 
is easily shown that it exists if the third-order correc­
tion to bn exists in perturbation theory. 

In general, we can obtain all higher derivatives of 
bn by differentiating Eq. (5) and requiring that, for 
oPbn/o)"P to exist, the following must also exist: 

or 

oPb ' 
)"ZH~n,-n--o as ),,-0 

n' o)"P 

~ H' oPbn, 
f nn' o)"P . 

The resulting equation for (I/p!)(oPbn/o)"P) is 
exactly the same equation that one gets for bnp if we 
had assumed a solution of the form 

bnC),,) = ~ bnp)"P, 
P 

Ei (),,) = ~ EipAP, 
P 

and equated powers of )" to zero, as one does in a 
conventional derivation. Hence one finds that 

1. oPbn 1- b 
p! o)"P 0- np' 

1 oP+1Ep.) 1 

(p + 1)! o)"P+! 0= E
i ,p+1' 

(12) 

where bnp and Ei • p +1 are the results from perturbation 
theory, provided only that these quantities exist and 
that 

~H' ,oPbn , I 
n' nn oAP 0 

converges, 

i.e., 
Fp == ~ H~n,bn'p converges. (13) 

n' 

Let us assume that the quantities in Eq. (12) exist 
and determine the conditions under which Fp exists. 
Equating powers of 2P+l in Eq. (5) to zero, we note 
that Fp can be rewritten as a sum of products of 
Etmbn.p+1-m, m=O,l ..... p+!, all of which exist by Eq. 
(l2)-except possibly bn,p+!' Hence, if the quantities 

in Eq. (12) exist, Fp exists if and only if the (p + l)th 
correction to bn exists in perturbation theory. Hence 
the theorem is proven. 

Now if g(),,) 10 , g'(),,)lo, ... ,g(p)()")lo all exist, then 
Taylor's formula with remainder is 

g(),,) = gjo + gllo)" + gil \ ),,2 + ... + g{p) I )"p 
2 0 p! 0 

g(p+1I(OA) + )"P+!, 0 < 0 < 1. (14) 
(p + 1)! 

Hence Ei (),,) and 'lJ'i(),,) can be written as such an 
expansion with the coefficients being given by per­
turbation theory. From this we can deduce several 
corollaries. 

Corollary 1: If Eip and bnp exist for all finite p in 
perturbation theory, then the perturbation series is an 
asymptotic expansion for both the energy and the 
wavefunction. 

Proof' We want to prove that if 

N g(nl I g(N+ll(O;') 
g = ~ _ An + )"N+! 

n=O n! 0 (N + I)! (15) 

for arbitrary N, then 

lim ),,-p[g - i g(n) I An] - 0 
..... 0 n=O n! 0 

(16) 

for arbitrary p. 
Take N = p. Then 

lim)"-P g - ~L )"n 
[ 

P (nl I ] 
n=O n! 0 

= lim ;.-p )"P+! g (0),,) = lim O(),,) = 0, 
[ 

(P-tll ] 

.. -+0 (p + I)! .. -+0 
(17) 

which is Eq. (16). 

Corollary 2: If Eip and bnp exist for all finite p in 
perturbation theory, then the perturbation series is 
unique, even though it may not converge. 

The proof of this statement follows from the first 
corollary, since the asymptotic expansion of a function 
is unique. It should be noted, however, that if by 
some means the perturbation expansion can be 
"summed"; i.e., if we can find an analytic expression 
whose expansion is exactly the same as the perturba­
tion series term-by-term, it does not follow that the 
expression is the exact solution of the problem. This 
statement follows from the fact that two different 
functions may have the same asymptotic expansions, 
or, said another way, there are functions whose 
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asymptotic expansion is identically zero, i.e., 
exp - (I! A2), which can be added to the result of the 
"summation" and which gives the same asymptotic 
expansion. However, if the perturbation series actually 
converges, then the series defines a unique function 
and there is no ambiguity concerning the appropriate 
exact solution. 

Corollary 3: If Eiv+1 is greater (less) than zero, then, 
for sufficiently small A, the sum of the series up to and 
including Eip underestimates (overestimates) Ei(A). 

The proof follows immediately from the sign of the 
remainder term in Eq. (14), since, for sufficiently 
small A, g(PH)(OA) always has the same sign as 
g(PH)(O), and hence the remainder has the same sign 
as g(PH)(O) (for A > 0). Then if the remainder is 
positive (negative), taking only terms up to AV in the 
series must underestimate (overestimate) the true 
result. 

From the corollary it immediately follows that if 
two consecutive terms in the perturbation expansion 
have the same sign, then, for sufficiently small A, 
the partial sum including the first term is always 
closer to the exact result than the partial sum up to, 
but not including, the first term. Furthermore, it also 
follows from the corollary that if two consecutive 
terms in the perturbation series have opposite sign, 
then for sufficiently small A, the exact result lies be­
tween the partial sum including the first term and the 
partial sum up to, but not including, the first term. 

It is sometimes stated that the odd orders of per­
turbation theory overestimate the perturbed ground 
state energy.4.5 We see from our work that this can 
be true only if all the even terms are negative. This is, 
of course, the case for p = 2, but we see no reason 
why it is true in general. The "proof" generally given 
that the odd orders overestimate the energy is merely 
the statement that the terms through O(A2nH) in 
perturbation theory are the same as those given by the 
expectation value of H if we take as our wavefunction 
the perturbation-theory result to O(An). However, 
with such a wavefunction we obtain an upper bound 
on the perturbed ground-state energy containing 
terms to O(A2nH), which is not the same expression 
as the (2n + 1)th-order result in perturbation theory. 
This follows from the fact that in perturbation theory 
there are contributions to the energy to O(A2nH) from 
terms in the wavefunction of orders as high as O(A2n). 
On the other hand, if we take the expectation value of 
H with the perturbation-theory wavefunction through 
O(A2n), we obtain an expression for the energy having 
terms up to O(A4nH), and it is this expression [and 
not the sum of the terms to O(A2nH)] which, by the 
variational tlieorem, overestimates the energy. Once 
we drop the terms of higher order than A2nH, we can 
no longer be certain that what is left still overestimates 
the energy. 

• B. F. Gray, J. Chern. Phys. 29, 276 (1958). 
5 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hili Book Company, Inc., New York 1953), Vol. II, pp. 
1119-20. 
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Numerical Solution of a Singular Integral Equation 
Encountered in Polymer Physics * 

D. W. SCHLITT 

University o[ Nebraska, Lincoln, Nebraska 

(Received 14 July 1967) 

A numerical method for the solution of an integral equation of the type encountered in the Kirkwood­
Riseman theory of intrinsic viscosities of flexible macromolecules is investigated. The absolute accuracy 
and rate of convergence of the method are evaluated for a special case and the results of this method are 
compared with another recently proposed method of solution. 

I. INTRODUCTION 

A theory of the intrinsic viscosities and translational 
diffusion constants of flexible macromolecules has 
been developed by Kirkwood and Riseman.1 The 
theory requires the solution of a linear integral 
equation of the Fredholm type with an unbounded 
kernel. The solutions of this equation have been 
discussed by Auer and Gardner, 2 and numerical 
methods have been applied to the problem by UU­
man.3•4 The numerical methods, which have been 
applied, involve the usual reduction of the integral 
equation to a set of linear algebraic equations. The 
fact that the kernel is unbounded introduces complica­
tions which were resolved by Ullman by averaging 
over the singular region. In this paper, an alternative 
method is considered and the results of the two 
methods are compared. 

II. EQUATION AND METHODS OF SOLUTION 

The integral equation of interest is of the form 

q;(x) = [(x) - J. L: q;(t) Ix - Wa dt (1) 

with 0 < ex. < 1. The approximation procedure which 
we use is based on the Gaussian quadrature formula. 
The integral is converted into a sum of weights 
times the value of the integrand at points t =Xi and 
we evaluate the equation for values of x = Xi' 
This means that, for one term in the sum, Ix; - t I will 
vanish. UUman and UUman4 replace that term by an 
appropriate average value for the integral in the 
vicinity of t = Xi' An alternative method5 is to 
rewrite the integral equation so that the singular 
contribution to the integrand cancels out. If we add 

• Supported in part by National Science Foundation Grant 
GP-5373. 

1 J. G. Kirkwood and J. Riseman, J. Chern. Phys. 16, 565 (1948). 
• P. L. Auer and C. S. Gardner, J. Chern. Phys. 13, 1545 (1955); 

13, 1546 (1955). 
8 R. Ullman, J. Chern. Phys. 40, 2193 (1964). 
• N. Ullman and R. Ullman, J. Math. Phys. 7,1743 (1966). 
5 The method was suggested to the author by Dr. Graharne Frye 

(private communication) several years ago in connection with an 
entirely different problem and is probably very widely known. 

and subtract 

Aq;(X) f11X - tl-a dt 

to Eq. (I), we get 

q;(x) =f(x) - J.f/q;(t) - q;(x)] Ix - tl-a dt 

and if we let 

- Aq;(X) fllX - tl-adt 

(2) 

we have 

q;(x) = f(x) [1 + AgaCX)r1 
- J.[1 + J.gaCx)t1 

X fl[q;(t) - q;(x)] Ix - Wa dt. (3) 

The kernel in Eq. (2) is considerably more compli­
cated, but if q;(x) is continuous and has a continuous 
first derivative for -1 < x < 1, then the integrand is 
bounded. The integral defining ga can be evaluated 
for the values of ex. which are of interest, giving 

gaCx) = (1 - ex.)-1[(X - l)-a+1 + (1 - x)-a+1]. (2') 

The integral in Eq. (3) can be converted to a sum 
using a Gaussian quadrature formula which reduces 
the integral equation to a set. of linear algebraic 
equations felr the value of q; at a set of fixed points 
defined by the quadrature formula. If Xi denotes the 
ith abscissa and Wi its weight, then we must solve the 
equations 

N 

!AHYi = Zi (4) 
j=l 

for the Yi where 

and 

Yi = q;(xi), 

Zi = f(xi)[1 + A.g,ixi)]-t, (5) 

Aij = A.wj[l + Ag,ixi)]-l/Xi - xjra; i:F j, 
N 

Au = 1 -!(1 - bij)Atj. (6) 
j=1 

436 
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m. RESULTS 

In order to evaluate the usefulness of this method 
and to allow comparison with the published results of 
Ullman and Ullman,4 Eq. (4) was solved for the case 
where 

I(X) = X2 and rJ. = t. 

A code was written in' FORTRAN for the IBM 360 
model 50 using a standard matrix inversion subroutine 
with full pivotal condensation. Execution time was 
not excessive: roughly 0.04 h was required to compute 
the result for one value of A with N = 80. 

The use of a Gaussian integration method has one 
drawback; the abscissas depend on the value of N. 
This complicates the comparison of the results for 
different N. In order to avoid this problem an attempt 
was made to use Eq. (1) for the evaluation of (jl(x) 
for x ¥= Xi' The integral on the right in Eq. (1) depends 
only on the Yi and thus can be replaced by a sum with 
all terms finite. This method proved to be extremely 
inaccurate and was of no value. 

The reliability of the numerical work was checked 
in two ways. First, the ordering of the linear equations 
was changed in some check calculations and the 
variations in the values of (jl(x) were observed, and 
second, the computed values of (jl(x) and (jl( -x) were 
compared (they should be equal). Both tests lead to the 
same conclusion that errors from this source are not 
detectable in the numbers reported here, although they 

0.3 ,..-----r----.,..-----,r-----, 

,., 0.5 '" 0 
oc .-
~ 
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are quite easy to see in the single-precision output 
from the computer. 

A number of comparisons were made in order to 
estimate the absolute accuracy of the method and its 
accuracy relative to the method of Ref. 4. These 
comparisons are indicated in the graphical and 
tabular materials. Figures 1 and 2 show a direct 
comparison between the results in this paper and 
Ref. 4. There is a definite systematic difference 
between the two methods. Examination of Tables 
I-IV shows that the differences are generally between 
1 and 0.1 per cent. Since the applications of the solu­
tions of Eq. (1) to polymer physics involve an integral 
of (jl(x) over x, errors of this magnitude could be 
serious. The effect is probably minimized because the 
differences change sign as can be seen in Figs. '1 and 2. 

The absolute error can be investigated by comparing 
the solutions obtained here with an exact solution for 
A --+ 00. This solution is2•4 

(jla(X) = ../'2 (4X2 - 1)/3d(1 - X2)!. 

The comparison is found in Table V. Notice that both 
the results reported here and those of Ref. 4 increase 
in magnitude as A increases. In addition, the results 
of Ref. 4 are all larger in magnitude than the asymp­
totic value while the results reported here are smaller 
in magnitude and appear to approach the asymptotic 
value. 

The convergence of the solution with increasing N 

1.4 

1.2 

0.6 

0.4 

0.96 0.97 0.98 0.99 1.00 

X 
FiG. 1. A plot of tp(x) vs x for 0 < x < 0.4 and;' = 200. The FIG. 2. A plot of tp(x) vs x for 0.96 < x < 1.00 and;' = 200. The 

upper line is the present work, the lower is Ref. 4. lower line is the present work, the upper is Ref. 4. 
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TABLE I. A comparison of two methods of solution for A = 0.5 TABLE III. A comparison of two methods of solution for A = 20 
and N = 20, 40, and 80. and N = 20, 40, and 80. 

x N=20 N=40 N= 80 x N=20 N=40 N= 80 

0.019511 This paper -0.081002 0.019511 This paper -0.0071355 
Ref. 4 -0.081611 Ref. 4. -0.0075413 

0.116084 This paper 0.116084 This paper -0.006762 -0.0067718 -0.006773 
Ref. 4 -0.07370 -0.073751 -0.07376 Ref. 4. -0.0069158 

-0.074555 

0.502804 This paper 0.06252 0.06254 0.062541 0.502804 This paper 0.000282 0.000272 0.00027054 

Ref. 4. 0.062666 Ref. 4. 0.00024289 

0.778305 This paper 0.28371 0.28398 0.28399 0.778305 This paper 0.01322 0.013269 0.01327 
Ref. 4. 0.28551 Ref. 4. 0.0\3422 

0.999554 This paper 0.67454 0.999554 This paper 0.101496 
Ref. 4. 0.67470 Ref. 4. 0.101630 

TABLE II. A comparison of two methods of solutions for A = 5 
and N = 20, 40, and 80. 

TABLE IV. A comparison of two methods of solution for A = 200 
x N=20 N=40 N= 80 and N = 20, 40, and 80. 

0.019511 This paper -0.024896 x N=20 N=40 N=80 
Ref. 4. -0.025238 

0.019511 This paper -0.00074540 
0.116084 This paper -0.02351 -0.023537 -0.23543 Ref. 4. -0.00075671 

Ref. 4. -0.024002 

0.00273 0.00271 0.002707 
0.116084 This paper -0.0007070 -0.00070822 0.0007085 

0.502804 This paper Ref. 4. -0.00072363 
Ref. 4. 0.002638 

0.778305 This paper 0.05011 0.050288 0.05028 0.502804 This paper 0.0000127 0.0000114 0.0000111018 

Ref. 4. 0.050836 Ref. 4.4 0.0000079162 

0.999554 This paper 0.25986 0.778305 This paper 0.00\341 0.0013461 0.00\346 
Ref. 4. 0.25978 Ref. 4. 0.0013618 

0.999554 This paper 0.012984 
Ref. 4. 0.013045 

0.00136 
(a) 

-----Ref. 4 0.0013618 
ODOl33 TABLE V. A comparison of two methods of solution with N = 80 

QOoo709 (b) ---
Ref. 4 O~ 

ODOO7~~--~--~----L----L---J--~ 

3 006256 ~-..... --r--""'-----'r---..... ---' 

~ _______ (e) 

Ref. 4 0.062666 ~ 
006250 ~-~--~-~-~~-~~ 

007380~-..... --r--..... -----'r---r---' 
(d) 

0.07370~~ -
0.00 001 0.02 0.03 004 005 

~ 
FIG. 3. Typical plots of f/J(x) vs lIN for selected values of x and 

A. Curve (a) x = 0.77, A = 200, (b) x = 0.11, A = 200, (c) x = 
0.50, A = 0.5, and (d) x = 0.11, A = 0.5. 

and A = 100 and 200 with the exact solution for A infinite. 

x Arp, A = 100 Arp, A = 200 Arpa 

0.019511 This paper -0.14835 -0.14908 -0.14984 
Ref. 4. -0.15059 -0.15134 

0.116084 This paper -0.14099 -0.14170 -0.14247 
Ref. 4. 

0.250952 This paper -0.11276 -0.11342 -0.11409 

0.502804 

0.778305 

0.982849 

0.999554 

Ref. 4. -0.11462 -0.11529 

This paper 
Ref. 4. 

This paper 
Ref. 4. 

This paper 
Ref. 4. 

This paper 
Ref. 4. 

0.002597 

0.26871 

0.99057 
1.00001 

2.51135 
2.52160 

0.002220 
0.001583 

0.26911 

0.99614 
1.00574 

2.59671 
2.60904 

0.001815 

0.26948 

1.00072 

2.60159 
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was investigated and the results are shown in Tables 
II-V and in Fig. 3. As was pointed out earlier, the 
Gaussian integration method does not give values of 
q; at the same x for different N. In order to make these 
comparisons, values of q; at x = 0.116084, 0.802804, 
and 0.778305 were determined by an Aitken four-point 
interpolation. The accuracy of the interpolation was 
checked by interpolating to a value of x for which q; 
was determined and comparing the two results. This 
confirmed that the interpolations were accurate to the 
number of places shown in the tables. As can be seen 
from Fig. 3, the relative convergence is good. If the 
convergence is to the exact result, then the results of 
Ref. 4 are less accurate for N = 80 than those reported 
here are for N = 20. 

From these observations we conclude that the 

method proposed here is probably a better approach 
to the numerical solution ofEq. (1) than that proposed 
in Ref. 4 on the basis of speed of convergence and on 
overall accuracy. 

Insofar as could be determined by the present 
author, the method of solution suggested in Ref. 2 
has not been investigated as a method of numerical 
solution of the equations. It would be interesting to 
compare that method with this one. 
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The scattering of time-harmonic spherical scalar waves by a large, convex, transparent, dense, and 
three-dimensional object with statistically corrugated surface is considered. The maximum deviation of 
the corrugated surface from the smooth one is assumed to be small, and hence the boundary-perturbation 
technique is utilized in this study. First, the scattering of scalar waves by a large, transparent, and 
dense sphere with statistical surface irregularities is treated as a canonical problem in the general dis­
cussion. After the perturbation solution is expanded asymptotically for large ka, it is found that the 
higher-order solutions can be obtained from the zeroth-order solution in a simple and straightforward 
manner. Then this relationship is generalized to scattering by a large, convex, transparent, and dense 
object with statistical surface irregularities; a general recipe is given. Finally, the asymptotic expressions 
of mean values of the scattered wavefunction and the scattered intensity are given for the general problem. 

I. INTRODUCTION 

In recent years, an increasing amount of attention 
has been devoted to the study of the effect of statistical 
surface irregularities on propagation and scattering of 
various types of waves. Although the general problem 
of scattering waves from corrugated surfaces appears 
to be difficult, a number of investigators have been 
able to make progress by applying either probability 
theory or perturbation theory to the problem of 
scattering of waves by statistically corrugated plane 
surfaces under a few suitable assumptions. For a 
systematic classification of existing theories developed 
for random irregular surfaces, and a rather complete 

bibliography, readers are referred to an excellent text 
by Beckmann and Spizzichino.1 

Here we shall be concerned with the scattering of 
time-harmonic spherical scalar waves by a large, 
convex, transparent, and dense object with a statisti­
cally corrugated surface. The case of a small trans­
parent sphere with a statistically corrugated surfac~ 
has been treated by Chen and Kim.2 The ratio of the 
maximum deviation of the corrugated surface from 
the unperturbed one to the local radius of the scatterer 

1 P. Beckmann and A. Spizzichino, The Scattering of Electro­
magnetic Waves from Rough Surfaces (The Macmillan Company, 
New York, 1963). 

I Y. M. Chen and S. J. Kim, J. Acoust. Soc. Am. 41, 1 (1967). 
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was investigated and the results are shown in Tables 
II-V and in Fig. 3. As was pointed out earlier, the 
Gaussian integration method does not give values of 
q; at the same x for different N. In order to make these 
comparisons, values of q; at x = 0.116084, 0.802804, 
and 0.778305 were determined by an Aitken four-point 
interpolation. The accuracy of the interpolation was 
checked by interpolating to a value of x for which q; 
was determined and comparing the two results. This 
confirmed that the interpolations were accurate to the 
number of places shown in the tables. As can be seen 
from Fig. 3, the relative convergence is good. If the 
convergence is to the exact result, then the results of 
Ref. 4 are less accurate for N = 80 than those reported 
here are for N = 20. 

From these observations we conclude that the 

method proposed here is probably a better approach 
to the numerical solution ofEq. (1) than that proposed 
in Ref. 4 on the basis of speed of convergence and on 
overall accuracy. 

Insofar as could be determined by the present 
author, the method of solution suggested in Ref. 2 
has not been investigated as a method of numerical 
solution of the equations. It would be interesting to 
compare that method with this one. 
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The scattering of time-harmonic spherical scalar waves by a large, convex, transparent, dense, and 
three-dimensional object with statistically corrugated surface is considered. The maximum deviation of 
the corrugated surface from the smooth one is assumed to be small, and hence the boundary-perturbation 
technique is utilized in this study. First, the scattering of scalar waves by a large, transparent, and 
dense sphere with statistical surface irregularities is treated as a canonical problem in the general dis­
cussion. After the perturbation solution is expanded asymptotically for large ka, it is found that the 
higher-order solutions can be obtained from the zeroth-order solution in a simple and straightforward 
manner. Then this relationship is generalized to scattering by a large, convex, transparent, and dense 
object with statistical surface irregularities; a general recipe is given. Finally, the asymptotic expressions 
of mean values of the scattered wavefunction and the scattered intensity are given for the general problem. 

I. INTRODUCTION 

In recent years, an increasing amount of attention 
has been devoted to the study of the effect of statistical 
surface irregularities on propagation and scattering of 
various types of waves. Although the general problem 
of scattering waves from corrugated surfaces appears 
to be difficult, a number of investigators have been 
able to make progress by applying either probability 
theory or perturbation theory to the problem of 
scattering of waves by statistically corrugated plane 
surfaces under a few suitable assumptions. For a 
systematic classification of existing theories developed 
for random irregular surfaces, and a rather complete 

bibliography, readers are referred to an excellent text 
by Beckmann and Spizzichino.1 

Here we shall be concerned with the scattering of 
time-harmonic spherical scalar waves by a large, 
convex, transparent, and dense object with a statisti­
cally corrugated surface. The case of a small trans­
parent sphere with a statistically corrugated surfac~ 
has been treated by Chen and Kim.2 The ratio of the 
maximum deviation of the corrugated surface from 
the unperturbed one to the local radius of the scatterer 

1 P. Beckmann and A. Spizzichino, The Scattering of Electro­
magnetic Waves from Rough Surfaces (The Macmillan Company, 
New York, 1963). 

I Y. M. Chen and S. J. Kim, J. Acoust. Soc. Am. 41, 1 (1967). 
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is assumed to be small in this study. Hence the 
scattered wave can be determined by the boundary­
perturbation technique,3 which is based on the Taylor 
expansion of boundary conditions at the perturbed 
boundary and the representation of the field as a 
power series in the aforementioned ratio. 

First, we shall treat scattering of scalar waves by a 
transparent sphere with a statistically corrugated 
surface as a canonical problem in our general dis­
cussion. This has the advantage of illustrating the 
method without introducing extraneous geometrical 
details; it is also a case for which we can obtain the 
exact perturbation solution, assuming that the 
perturbation series converges. The exact perturbation 
solution is then asymptotically expanded for large ka. 
It is found that the higher-order solutions can be 
systematically obtained from the zeroth-order solu­
tion in a rather straightforward manner. Hence a 
general recipe based on the zeroth-order solution, 
which, in general, can be constructed from the geo­
metrical theory of diffraction,4-7 is given for the 
treatment of scattering by a large, transparent, and 
convex object of arbitrary shape with a statistically 
corrugated surface. Finally, the asymptotic expressions 
of mean values of the scattered wavefunction and the 
scattered intensity are given for the general problem. 

II. BOUNDARY PERTURBATION 

Let any point in a three-dimensional physical 
space be denoted by vector r = au ~2' ~3)' where 
~i are generalized curvilinear coordinates. 

Let a random surface S be defined by 

(1) 

where A is a constant; £ is a small parameter such 
that lif( ~2' ~3' q)1 < 1; f( ~2' ~3) q) is a smooth, con­
tinuous function of ~2 and ~3' such that lof/o~21 < 1 
and lof/o~31 < 1 for all values of ~2' ~3' and q; q is 
a random variable ranging over a space X in which a 
probability density P(q) is defined such thafthe mean 
(or average) value of a random function W(r, q) is 
defined as 

(W) = Ix W(r, q)P(q) dq. (2) 

Let the random surface S separate the entire physical 
space into region 1 and region 2. Let the solution of 

• P. M. Morse and H. Feshback, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. II. 

'J. B. Keller, "A Geometrical Theory of Diffraction," Symposium 
on Microwave Optics, Eaton Electronics Res. Lab., McGill Univ., 
Montreal, Canada (1953). 

• J. B. Keller, J. Opt. Soc. Am. 52, 116 (1962). 
• Y. M. Chen, J. Math. Phys. 5, 820 (1964). 
7 Y. M. Chen, J. Math. Phys. 6, 1332 (1965). 

a linear differential equation satisfy the following 
system of equations: 

LU(r, q) = F(r) for r in region 1, (3) 

LV(r, q) = G(r) for r in region 2, (4) 

B(U,V,D.VU,D·VV,···)=O for ronS, (5) 

and some uniqueness conditions of U and V in region 
1 and region 2, respectively, where D is the unit normal 
vector of S. 

Now assuming that both U and V are analytic 
functions of parameter £, we can expand U and V in 
a power series of £ : 

00 

VCr, q) = Vo(r) + !£jV;(r, q) (6) 

and 
i=1 

00 

V(r, q) = VO(r) + 2£iV;Cr, q). (7) 
i=1 

Since 

o /3 as /-1 3 as 3 a - = n • V = 2 eihi1 - ! ei hi1 - . 2 hi1 
-an i=1 o~; ;=1 O~i i=1 O~i 

= h-1{1 _ £2 h~A2 [1 (Of)2 + 1 (Of)2J} 1..-
1 2 h~O~2 h: . a~3 O~1 

hI of a hI of 0 3 
- £ - A - - - £ - A - - + 0(£) (8) 

h~ O~2 O~2 h: O~3 O~3 ' 

expressions for D' VU, D' VV, and others can be 
easily derived. Next we expand V, V, D' V U, 
D • V V, ... , in a Taylor series about the unperturbed 
boundary ~1 = A. By setting the coefficients of 
similar powers of £ in the boundary condition (5) 
equal to each other, we obtain boundary conditions 
for the zeroth-order and jth-order solutions, respec­
tively: 

B(Uo, Vo, Do' VVo, Do' VVo, ... )!h=A = 0 (9) 

B{ S2j-l( Vo, Do' VVo, Vo, Do' VVo) .. " Vj, Do' VV j , 

Vj,Do'VVj,"',j, of, of , ... ), 
a~2 O~3 

S2j(Uo,no'vuo, Vo,Oo'VVo,"', Uj,no'VU j , 

V. D • vv. .. , J, of of ... ) ] I = 0 
,,03' ":tt:':tt:' 

U~2 U~3 h=A 

j = 1,2, 3, .. " (to) 

where Do is the unit normal vector of surface ~l = A. 
Upon substituting (6) and (7) into (3) and (4), 
respectively, we get 

{
LUo = F for r in region 1) 

LUi = 0 j = 1,2, 3, ... , 
(11) 
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and 

{
LVo = G ~or r in region 2, 

LVj = 0 } = 1,2,3, .. '. 
(12) 

In view of the above derivation, the jth-order solu­
tion is generated by the equivalent sources S2i-1 and 
SZi' arising from the interaction of all the lower-order 
solutions with surface irregularities. Since the bound­
ary condition for the solution of each order is matched 
at the unperturbed surface ~I = A, rather than at S, 
the essential effect of this boundary-perturbation 
technique is to transform the original boundary-value 
problem to an equivalent boundary-value problem 
with the unperturbed body as the scatterer on which 
equivalent sources are induced. 

III. PERTURBATION SOLUTION OF A 
ROUGH SPHERE 

The perturbation solution of the scattering of a 
time-harmonic (e iwt) spherical wave by a penetrable 
sphere with statistically corrugated surface has been 
obtained by Chen and Kim,2 but we will reproduce it 
here briefly for our convenience. 

Let the surface of an almost spherical obstacle be 
defined by 

r = a + bl(O, cp, q), (13) 

where (r, 0, cp) are the spherical coordinates of a 
typical point on the surface and where 1(0, cp, q) is a 
smooth continuous function of 0 and cp which satisfies 
conditions l(b/a)/(O, cp, q)1 < 1, 10//001 < 1, and 
lol/ocpl < I for all values of 0, cp, and q. 

The wavefunction u(r, 0, cp), caused by a point 
source located at (ro, 0, 0) (see Fig. 1), satisfies the 
following equations: 

(V'2 + k2)[U. + u (q)] = 6(r - ro)6(0) r> r (14) 
I, s 27Tr2 sin 0' -, 

(V'2 + k~)ulq) = 0, r S r, (15) 

ut(q) < 00 at r = 0, (16) 

lim r[a(u; + us)/ar + iktCu; + us)] = 0, (17) 
r-" 00 

(u; + us) = ocut at r = r, (18) 

and 
o(u; + us)/an = pout/on at r = r. (19) 

If the parameter E = bra is small enough, from (6) 
and (7) we obtain 

and 
(21) 

From Eqs. (9) and (10) the boundary conditions 

z 
SOURCE 

X 

FIG. 1. The geometry of a statistically corrugated sphere is shown. 

for the zeroth-order, first-order, and second-order 
solutions are, respectively, 

UOa == Ui + Uso - ocUto = O,} 
au at r = a, 
o;P == o(ui + uso - puto)/or = 0, 

(22) 

[USI - ocutl = -afouoa/or]r~a == SI(O, cp, q)} 
[ausl/ar - paUtl/ar = -ala2uop/ar2 , (23) 

+ a-l(al/aO)ouop/aO]r~a == S2(0, cp, q) 
and 

[us2 - OCU t2 = ia'i2a2uoa/ar2]r~a == S3(0, cp, q) ) 

[OUS2/or - paUts/or = ia'i2a3uop/or3 
- a-lj(al/aO)(ouofJ /aO) - a-I(Of/aO)ouIP/oO • 

+ a-I sin-2 O(al/acp)aUIfJ/acp]r~a == S4(0, cp, q) 

(24) 

The other S's can be obtained in a similar way. 
By the method of eigenfunction expansion, the 

zeroth-order and higher-order solutions can be easily 
obtained as 

e-ik1 I r-<o I 
ui = -

47T Ir - rol 
0() 

= I AnP nCeos O)jn(kir <)h~)(kIr», (25) 
n~O 

0() 

Uso = I BnP nC cos O)h~)(kIrO)h~)(klr), (26) 
n~O 

0() 

Uto = I CnP n(eos 0)jn(k2r), 
n~O 

(27) 

0() 0() 

USi = I I (D~mY:m + E~mY~m)h~2)(klr), 
n~Om~O 

j = 1,2,3, .. " (28) 

0() 0() 

uti = I I (F~mY:m + G~mY~m)jnCk2r), 
n~O m~O 

j = 1,2,3, .. " (29) 
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where 

An = iktC47T)-1(2n + 1), (30) 

Bn = -An~;1[lXjn(k2a)j~(kla) - f3Nj~(k2a)jn(kla)], 

(31) 

en = -ik12a-2An~;lh~'(klro), (32) 

D~m = ~;1[lXklljn(k2a)L~;" - f3Nj~(k2a)L2j;;/], 

j = 1, 2, 3, . ", (33) 

E~m = ~;1[lXklljnCk2a)M~;" - f3Nj~(k2a)M~j;;l], 

j = 1,2,3, ... , (34) 

F~m = ~;1[kl1h~2)(kla)L~;" - h~)'(kla)L2j;;I], 

j = 1,2, 3, ... , (35) 

G~m = ~;1[kl1h~)(kla)M~;" - h~)'(kla)M~~l], 

j = 1,2,3, ... , (36) 

L~m = rnm f"l" Sj(O', q/, q)Y,:'m sin 0' dO' dq/, 

j = 1,2, 3, ... , (37) 

M~m = r nm fIr LIT Sl()', ({i', q)Y~m sin 0' d()' d({i', 

j = 1,2, 3, ... , (38) 

r < = min (r, ro), r> = max (r, ro), (39) 

Y!m = cos m({iPr;:(cos (), (40) 

Y~m = sin m({iPr;:(cos (), (41) 

N = k2/kl > 1, (42) 

~n = IXh~)'(kla)jn(k2a) - f3Nh~)(kla)j~(k2a), (43) 

r = € (2n + 1)(n - m)! (44) 
nm m 47T (n + m)! ' 

and 
€o = I, €1 = €2 = €3 = ... = 2. (45) 

In view of the above calculation, the first-order 
solution is essentially generated by equivalent sources 
SI and S2 arising from the interaction of the zeroth­
order wave with surface irregularities, and the second­
order solution is essentially generated by equivalent 
sources S3 and S4 arising from the interaction of the 
zeroth-order and the first-order waves with surface 
irregularities. Obviously this branching process will 
go on indefinitely. The essential effect of the boundary­
perturbation technique is to transform the original 
boundary-value problem to an equivalent boundary­
value problem with the unperturbed body as the 
scatterer which has induced sources on its surface. 

IV. ZEROTH-ORDER SOLUTION IN THE 
EXTERIOR OF A LARGE ROUGH SPHERE 

The zeroth-order solution is the solution for the 
case of smooth penetrable sphere. The asymptotic 

expansion of the exact solution for large k l a has been 
partially obtained by Rubinow,8 but we shall derive 
it in a more complete manner here. By means of the 
Poisson summation formula, (26) can be rewritten as 

To exhibit the physical interpretation of (46) we ex­
pand 1p. into a geometric series: 

where 

1p. = t{ 1 - ~[ Rll + 112 ~l ~lR~21Je~ ]}, (49) 

Rll = -[IX log' H~I)(kla) - f3Nlog' H~I)(k2a)] 

X [IX log' H~2)(kla) - f3N log' H~I)(k2a)rl, (50) 

RZ2 = - [IX log' H~2)(kla) - f3N log' H~2)(k2a)] 

X [IX log' H~2)(kla) - f3N log' H~I)(k2a)]-1, (51) 

IXT!? = I + Ru , (52) 

TZI = IX(I + R22), (53) 

log' H~6)(Z) = H~d)'(z)/H~6)(Z), b = 1,2, (54) 

Jel = H~1)(kla)/H~2)(kla), (55) 
and 

~ = H~2)(k2a)/H~I)(k2a). (56) 

The form (49) is introduced because the first term 
(I - Je1Rll) in the integrand of (46) represents the 
wave usOr externally reflected from the sphere in the 
lit region and negative of incident wave in the shadow 
region. The pth term in the sum, denoted by USo fJ , 

represents a wave transmitted into the sphere, reflected 
p - I times internally from the interface, having 
passed p times through the sphere, and finally trans­
mitted out into the surrounding medium. This 
interpretation is borne out when the various terms 
are expanded asymptotically for a short wavelength 
and evaluated properly. 

A. Geometric Optics Wave 

The criterion for the proper identification of the 
geometric optics wave from the asymptotic evaluation 
of (46) is the existence of real saddle points vOp 

(p = 1,2, ... ) such that 0 < vOp < kir <. Before 
evaluating UsO asymptotically by the saddle-point 

8 S. I. Rubinow, Ann. Phys. 14, 305 (1961). 
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+ Q~~I(COS 0)]'be-i2v1v
'V d'V, (57) 

where Q~~)(cos 0), /J = 1,2, are given in the appendix. 
We now consider 

UsOr = (i8rl(rrorl i ei1TI(J~!1 + J~I)' (58) 
1=-00 

where 

J!:~I = 100
(1 - Je,.Rll)Q~~I(COS 0)'be-i1T1 .'V d'V, 

/J = 1,2. (59) 

After using the proper asymptotic forms (see Appen­
dix) in (57), we investigate each term of (57) and find 
that only J~~~ has any real saddle points. It has two 
real saddle points, which fall in the ranges 0 < 'V < kia 
and kia < 'V < kir < • The corresponding saddle-point 
equations are 

COS-I..!! + cos-I ~ - 2 cos-I ..!Q... = 0 (60) 
kir klrO kia 

and 

respectively. 
Equation (60) has an unique, real solution only for 

the field point f lying in the lit region, and the solution 
is 

(62) 

where 'f}o is the angle of incidence or reflection. Equa­
tion (61) has an unique real solution only for the field 
point lying in the shadow, and the solution is 

\ 
\ 
\ 
\ 

-klQ 

V PLANE 

c 

FIG. 3. The saddle-point path C is shown schematically. 

By substituting (62) and (63) into (60) and (61), 
respectively, one obtains the correct geometrical 
relations between 0 and 'f}o and between 0 and CPo 
(Fig. 2), respectively: 

2'f}0 - sin-I [(a/r) sin 'f}o] - sin-I [(afro) sin 'f}o] = 0 

(64) 
and 

!7T - CPo + cos-I [(ro/r) sin CPo] = O. (65) 

The saddle-point path C is shown in Fig. 3. It is 
found that the end-point contribution of integrals is 
asymptotically small in comparison with the saddle­
point contribution; hence it can be neglected. Finally, 
the saddle-point contribution of uSOr is 

G -1 . ! 
U sOr '" - :Rl1(a sm 'f}o cos 'fJo) 

47T 

X {[2a-l(r2 - a2 sin2 'f}o)l(r~ - a2 sin2 'f}o)l 

- (r2 - a2 sin2 'f}o)l cos 'f}o 

- (r~ - a2 sin2 'f}o)* cos 'f}o]rro sin O}-l 

x exp { - ikl [(r2 
- a2 sin2 'f}o)l 

+ (r~ - a2 sin2 'f}o)l - 2a cos 'fJo]) 

'Vo = klrO sin CPo, (63) in lit region 

where !Po is the angle between f - fo and fo. 

FIG. 2. The geometric rays of U.or is shown for the case of N > 1. 
The geometrical relations between () and 710 and between () and f/Jo 
are al~o shown. 

'" -u? in shadow region, (66) 

where ~o is the angle of refraction such that 

sin 'f}o = N sin ~o, (67) 

and :Rll is the Fresnel reflection coefficient in medium 
1 such that 

to _ ()( cOS'f}o - {3N cos ~o 
.nll - . (68) 

()( cos 'fJo + {3N cos ~o 

u~ gives the contribution to the external reflected 
wave in the lit region and the negative of the incident 
wave in the shadow. 

For the once-transmitted wave, we have to evaluate 
asymptotically the following equation by the saddle­
point method: 

UsOl = (i8)-I(rro)-1 i ei1Tl(J~~1 + J~~l)' (69) 
1=-00 
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where 

It is found that only J!~~o may have real saddle points 
such that 0 < voP < kIa, p = 1,2, .. '. The corre­
sponding saddle-point equations are 

cos-1 VOP + cos-l VOP + 2 cos-l2QL 
klr klrO Nk1a 

- 2 cos-1 VO
p = () p = 1 2 '" 

kIa' '" 
(71) 

whose solutions are also given by (62) with an addi­
tional subscript p. Equation (71) gives the correct 
geometric relations: 

2'fJop + (7T - 2,op) - sin-l [(a/r) sin 1]op] 

- sin-1 [(afro) sin 1]op] = e, p = 1, 2, .. '. (72) 

Again the end-point contribution of integrals is 
asymptotically small in comparison with the saddle­
point contribution, and a typical saddle-point con­
tribution of usOI is 

u(p) ""' (- i) 1)(p)1)(p)(a COS'l'l sin'l'l )! sOl 47T 12 21 'lOP 'lOp 

X {[2a-\r2 - a2 sin2 'fJop}t(r~ - a2 sin2 'fJoP)! 

- (r2 - a2 sin2 'fJoP)! cos 1]op 

(
22'2 )! - ro - a sm 'fJop cos 'fJop 

_ (r2 _ a2 sin2 'fJop)!(r~ - a2 sin2 'fJoP)! 

x (Na cos 'op)-12 cos 1]op]rro sin ()t! 

X exp { - ik1[(r2 - a2 sin2 'fJoP)! 

( 2 2' 2 )! 2 ] + ro - a sm 'fJop - a cos 'fJop 

- i2k2a cos 'op}, (73) 

where 1)W is the Fresnel transmission coefficient from 
medium 1 to medium 2 and 1)~i) is the Fresnel trans­
mission coefficient from medium 2 to medium 1, such 
that 

and 

1)~~) = oc-1(1 + :RW) 

= oc-1 (1 + oc cos 1]op - f3N cos 'oP) (74) 
IX cos 1]op + f3N cos 'op 

(75) 

For the pth transmitted field, we evaluate asymp­
totically the following equation by the saddle-point 
method: 

usOP = (i8)-I(rro)-! ! ei"!(J~~! + J~~!), (76) 
1=-00 

where 

J(d) - roo:Ie T, 'E RP- hopn(6) ( ()')O -i2 .. /v d sOp! - Jo 1 12 21 22 ""2"v-! cos lJe v v, 

b = 1,2. (77) 

Only J~~l may have proper saddle points, and their 
corresponding saddle-point equations are 

-1 VoP + -1 VoP + 2 -1 Vop cos - cos - pcos--
kir kirO Nk1a 

- 2 cos-1 Vop = 27TI + 0 p = 1 2 ... (78) 
kia ' ". 

Again the relations between vop and 'YJop are given by 
(62). By substituting (62) into (78), we have 

2'fJop + p(7T - 2'op) - sin-1 [(air) sin 'fJop] 

- sin-1 [(afro) sin 1}op] = 27T1 + e, p = 1,2, ... , 

(79) 

where l's are properly chosen such that (79) is identical 
with the. geometric relations between 0 and 'fJop' A 
typical saddle-point contribution of u.oP is 

u(p) ""' (-1) 1)(p)1)(p)3l (p)p-l(a sin 'l'l COS'l'l )!-sOp 47T 12 21 22 '/Op 'lOp 

X ([2a-1(r2 - a2 sin2 'fJop)!(r~ - a2 sin2 'YJoP)!-

( 
2 2' 2 )! - r - a sm 'YJop cos'fJop 

( 
2 2' 2 )! - r ° - a sm 'fJop cos 'fJop 

- (r2 - a2 sin2 'fJop)!(r~ - a2 sin21]oP)! 

X (Na cos 'op)-12p cos 'fJop]rro sin O}-! 

X exp { - ik1[(r2 
- a2 sin2 'fJop)! 

( 2 2' 2 )! 2 ] + ro - a sm 'fJop - a COS1]op 

- i2k2ap cos 'up + ip ~}, (80) 

where :R22 is the Fresnel reflection coefficient in 
medium 2 such that 

(81) 

Except for the difference between the amplitude 
factors in th'e two-dimensional and three-dimensional 
cases, the expressions of u~~ and u~! are exactly the 
same as the case of a transparent circular cylinder, 6 

including the Fresnel coefficients. Hence these ex­
pressions can also be obtained by the geometrical 
theory of diffraction.4-6 

B. Diffracted Wave 

Any integral in (57) which does not have proper 
real saddle points may still be evaluated by the method 
of residues. In order to make the asymptotic evalua­
tion, we first extend the integrals along the positive­
real v axis to the entire real v axis. To this end, we 
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find that 

UsOr~ (8)-1(rro)-t[~eilT!L: 13P._!( -cos e) 

x e-i2lT (!+!)vy dy 

- l~ eilT!L: RllJe;~P._!( -cos e) 

x e-i2lTO+!).y dyJ - u7 in the shadow region, 

::::: u~ - (8r\rror! 

x [ieilTZL: RllJe113Q~~!( -cos e) 

x e-i2lTO+1). y dy 

+ !~ ei .. O+l) L:RllJel13Q~~!( -cos e) 

x e-i2"O+~).y dyJ in the lit region. (82) 

It is easy to see that usor has simple poles in the inte­
grand. The positions of the poles of all the integrals 
are determined by 

oc log' H~2)(kla) = ~N log' H~1l(k2a). (83) 

The approximate positions of the root v). of (83) in 
the lower complex y plane are 

(
k a)! . v - k a + I _1_ e-dlT/3) + ... 

). - 1 ). 6 ' (84) 

where I). is a number determined by 

ei (,,/3) (.i...)! A'(I).) ~ _ i ~ [1 - (~)2J! N, (85) 
k1a A(t;.) oc k2a 

and A(z) is the Airy function (see Appendix). 
After closing the contour in the lower complex y 

plane (Fig. 4), evaluating the residues, and neglecting 

\ V PLANE , 

FIG. 4. This figure shows schematically the positions of the 
poles of the integrand of (82), as well as the path of integration in 
the v plane. 

terms of o [(k1a)-1(N2 - I)-!], we obtain 

! 
UsOr ~ -u7 + L (-1) ~ilJ. ( a. ) 

). 47T rro sm e 
x [(r2 _ a2)(r~ _ a?)]-t(1 + e-i2". ,,)-1 

X [e-i';.6 + e-i• ;.(211-6)+i(,,/2)] 

X exp { - ik1[(r2 - a2)! + (r~ - a2)!] 

+ iy;. (COS-I; + cos-1 ~) } 
in the shadow region, 

~ u~r + L (4--.L.) ~ilJ. ( a. e)! 
;. 7Tl rro sm 

where 

x [(r2 - a2)(r~ _ a2)]-t(1 + e-i2". ;.r1 

X fe-i. ;.(2lT-6) + e-i • ;.(2 .. +6)+;(,,/2)] 

X exp { - ik1 [(r2 - a2)! + (r~ - a2)!] 

+ iy). (COS-I; + cos-1 ~) } 

in the lit region, (86) 

~ilJ. = 7TOC
2f3-2(N2 - 1)-\36k1a)-! 

X (27T/k1)![A(t;.)]-2e-;(5lT/12) (87) 

and ~1U is the diffraction coefficient in medium 1. 
Similarly, usov has poles of (p + 1) order whose 

positions can also be determined by (83). After 
evaluating them asymptotically, the expression of a 
typical term of usop is 

D ~ (-1) 2 (a)1 usOpl ~ ~ - ~1l)'~12~21 . 
;. 47T rro sm e 
x [(r2 _ a2)(r~ _ a2)]-t 

X [w p + (p - 1)(~12~21) w; 
2! 

+ (p - O(p - 2) (~ ~ )2 W! 
2! 12 21 3! 

+ ... + (p - 1)! (~12~21Y' w~ 
(p - 1 - ,u)! ,u ! (,u + 1)! 

+ ... + (~12~21)V-l W~J 
p. 

x exp { - ik1 [(r2 
- a2)! + (r~ _ a2)!] 

- iy;.wp - i2pk2a cos ~oc + ip7T/2}, (88) 

where the angular distance is 

2 1 + fj -1 a -1 a 2 -1 1 wp = 7T U - cos - - cos - - p cos -, 
r ro N 

(89) 
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the angle of critical incidence is 

~oc = sin-1 (ljN), (90) 

and the product of the diffraction coefficients from 
medium I to medium 2 and from medium 2 to medium 
1 is 

~12~21 = 2(ocjfJ)(N2 - I)-i. (91) 

Except for the difference between the amplitude 
factors in the two-dimensional and three-dimensional 
cases, the expressions of 

u£, = (usO, - u!::,) and U£PI 

are exactly the same as the case of transparent 
circular cylinder, 6 including the diffraction coefficients. 
Hence their detailed physical interpretations are given 
in Ref. 6. These expressions can also be obtained by 
the geometrical theory of diffraction.4.5 

V. ffiGHER-ORDER SOLUTIONS IN THE 
EXTERIOR OF A LARGE ROUGH SPHERE 

Upon applying the addition theorem for Legendre 
polynomials3 to (28) and assuming that the integration 
and the summation are interchangeable, we obtain 

us} = _1_ (21T ("{ i(2n + 1)~-;:;1[ocjn(k2a)S2l0', cp') 
41Tk1 Jo Jo n=O 

- fJkJ~(k2a)S2i_1(O', cp')] 

x Pn(cos Q)h~)(k1r)} sin 0' dO' dq/, 

j = 1, 2, 3, .. " (92) 
where 

cos Q = cos 0 cos 0' + sin 0 sin 0' cos (cp - cp'), 

(93) 

with Q being the angle between r and the vector 
passing through the point (a, 0', cp') on a spherical 
surface (Fig. 5). 

By means of the Poisson summation formula, (92) 
can be rewritten as 

usi = _1_(~)i r 21T 
r1T[ f ei111 roo "Pvim2)(k1r) 

21Tk1 r Jo Jo 1=-00 Jo 
x pv-i (cos Q)e-i11IVv dvJ sin 0' dO' dcp', 

j = 1, 2, 3, .. " (94) 
where 

rx.J.(k2a)S2i - (Jk2J~(k2a)S2i_1 
"Pvi = (2)'(k) (k) (J (2)(k) '(k ' ocH. 1a Jv 2a - NHv 1a Jv 2a) 

j = 1,2,3, .. '. (95) 

To exhibit the physical interpretation of (94) we again 
expand "P.i into a geometric series; 

-k1S2i_1 [R T. 1'. ~ "-1Je"] "Pvi = H~2)(k1a) lli + 12; 21,,7:/22 2, 

j = 1,2, 3, .. " (96) 

where 

z 

(r2..a2sin2?) Va 

- a COS? 

y 

FIG. 5. The geometry of the angh: n is shown. 

Rlli = -[ockl1S2i~1S2j - fJN log' H~1)(k2a)] 

X roc log' H~2)(k1a) - fJN log' H~1)(k2a)]-1 (97) 
and 

T12; = oc-1(I + Ruj), j = 1, 2, 3, .. '. (98) 

The form (96) is introduced because the first term 
in the integrand of (94) represents mainly the wave 
radiated directly from the equivalent source distri­
butions S2i and S2}-l [at a point (a, 0', cp') on the 
spherical surface] to the field point r. The pth term 
in the sum represents mainly a wave radiated from 
the source distributions S2j and S21-1 [at a point 
(a, 0', cp') on the spherical surface] into the sphere, 
reflected p - 1 times internally from the interface, 
having passed p times through the sphere, and finally 
transmitted out to the field point r in the surrounding 
medium. This interpretation is borne out when the 
various terms are expanded asymptotically for short 
wavelengths and evaluated properly. 

A. Geometric Optics Wave 

The criterion for the proper identification of the 
geometric optics wave from the asymptotic evaluation 
of (94) is the existence of real saddle points vip 
(p = 1,2, ... ) such that 0 < Vip < k1a. For con­
venience we write (94) as 

00 
usi = usi, + Iu sj", j = 1,2,3,"', (99) 

,,=1 
where 

usi, = (21Tklr1(a/r)f 1211 LT Ciooei11I i1 J!:~/) 
x sin 0' dO' dcp', (100) 

usip = (21Tk1)-1(a/r)f f1T L11 C=~oo ei1T1 J1 J;n/) 
x sin 0' dO' dcp', (101) 

J~~!I = -k1S2J- 1 50
00 
Rl1;[H~2)(kla)]-1 

X m 2) (klr)Q~~i(cOS Q)e-i21TlYv dv, (102) 
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and 

J~~~z = -k1S2}_1 LX) T12iT21R~21Jenm2)(k1a)]-1 

x H~2)(klr)Q~~1(COS n)e-i2lrZVv dv. (103) 

To find the contribution of the waves radiated 
directly from the equivalent sources S2} and S2i-1 
[as a point (a, ()', rp') on the spherical surface] to the 
field point r, we have to evaluate J~~~l asymptotically 
by the saddle-point method. After using the proper 
asymptotic forms, it is found that only J!i~ has a 
proper real saddle point when (a, ()', rp') is in the lit 
region of r. The saddle-point equation is 

cos-1..!L - cos-1 ..!.'.L = n. (104) 
k1r k1a 

Its solution can be expressed in terms of physical 
entities as 

(l05) 

and (104) becomes 

'fJ - sin-1 (; sin 'fJ) = n, (106) 

where 'fJ is the equivalent angle of incidence or reflec­
tion (Fig. 6). Since the end-point contribution of 
J~~~l is asymptotically small in comparison with the 
saddle-point contribution, the major contribution 
of usir is 

u~r "'-' -k1a\217)-Jf S2i_1:Rllj cos 'fJ(sin 'fJ)1 

L 

{[(r2 - a2 sin2 'fJ)1 - a cos 'fJ]r sin n}-l 

x exp { -ik1[(r2 - a2 sin2 'fJ)1- a COS'fJ] + i~} 

x sin ()' d()' drp', (107) 

where the equivalent Fresnel reflection coefficient in 

SHADOW 

REGION 

FIG. 6 .. The geometric ray from the equivalent source at a point 
Q on the surface to the field point is shown, and so is the geometrical 
relation between nand 'T). 

medium 1 is 

ill _ -ilXk"11S2l_1S2i - (3N cos ~ 
Jl.U) - , (108) 

IX cos 'fJ + (3N cos ~ 

~ is the equivalent angle of refraction such that 

sin 'fJ = N sin ~, (109) 

and I: means that the integration is carried out only 
on the portion of spherical surface in the lit region of r. 

u~r represents mainly the total contribution from 
the waves radiated directly from the equivalent sources 
S2) and S2i-l everywhere on the portion of the 
spherical surface which is in the lit region of r to 
the field point r (see Fig. 6). 

To find the contribution of the waves radiated from 
the equivalent sources S2i and S2i-1 at a point 
(a, ()', rp') on the spherical surface into the sphere, 
reflected p - 1 times internally from the interface, 
having passed p times through the sphere, and finally 
transmitted out to the field point r in the surrounding 
medium, we have to evaluate J!:~z asymptotically by 
the saddle-point method. After using the proper 
asymptotic forms, it is found that only J!:~l may have 
proper saddle points, and their corresponding saddle­
point equations are 

p = 1,2, .. '. (110) 

Again the relations between Vip and 'fJp are given by 

Vip = k1a sin 'fJP ' p = 1,2,···. (111) 

Equation (110) then gives the correct geometric 
relations: 

'fJp + p( 17 - 2~p) - sin-1 
(; sin 'fJp) = 2171 + n, 

p = 1, 2, .. " (112) 

where the l's have to be properly chosen such that 
(112) is identical with the geometric relations be­
tween nand 'fJp (see Fig. 7). A typical saddle-point 

FIG. 7. The geometric ray from the equivalent source at Q, 
reflected once internally from the interface, having passed twice 
through the sphere, and transmitted out to the field point in the 
surrounding medium, is shown, and so is the geollletrical relation 
between nand 'T)P' 
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contribution of u8;P is 

u~~~ "-J -k1a
2(21Trl f f S2;_;bl~~l)~f):R~)P-1 

cpp 

X cos 1']p(sin 1']p)!{[r2 - a2 sin2 1']p)! - a cos 1']p 

- 2p(r2 - a2 sin21']p)!(N cos {p)-l cos 1']p]r sin a}! 

x exp { - ik1[(r2 - a2 sin21']p)! - a cos 1']p] 

- i2pk2a cos {p + i(p + 1)~} sin ()' d()' dq/, 

(113) 

where Lpp means that the integration is carried only 
in the region in which S2;-1 and S2; give contributions 
to u(iJ) and 

SIP 

'(J(p) - a-1(1 + :R (p» 12i - Ui 

_ -1(1 -iex.k11
S;"l_lS2; - {3N cos {p) 

-a + . 
ex. cos TJ p + {3N cos {p 

(114) 

Hence ~p u~f~ represents mainly the total contribution 
from the waves radiated from the equivalent sources 
S2i and 52;_1 everywhere on the portions of the 
spherical surface into the sphere, reflected p - 1 
times internally from the interface, having passed p 
times through the sphere, and finally transmitted out 
to the field point r (see Fig. 7). 

B. Diffracted Wave 

Similar to the zeroth-order solution, any integral of 
(102) and (103) which does not have proper real 
saddle points may stilI be evaluated by the method 
of residues. In order to make the asymptotic evalua­
tion, we must first extend the integrals along the 
positive real v axis to the entire real v axis. Hence we 
find that 

us;r = u?tr - J...- (~)!{ ffS2i-1 ~ eiU1Joo RUi 
21T r 1=0-00 

C' 

X [H~2)(kla)]-lH~2)(k1r)PV_!( -cos 0) 

X e-i2U (i+t>Vy dv sin ()' d()' dq?' 

+ f f S21-1 l~ eilT1l: Ru;[H~2)(kla)]-1 
C 

X H~2)(k1r)[Q~~!( -cos 0) + Q~~!( -cos 0) 

X e-i2U(V-!)]e-i2lTO+!>Vv dv sin ()' d()' dIP'}' (115) 

where C' means that the integration is carried out 
only on the portion of spherical surface in the shadow 
region ofr. 

Since usir has exactly the same singularities as those 
of u80r ' after closing the integration path in the lower 

FIG. 8. The diffracted ray from the equivalent source at Q, 
travelling along the interface on the side of medium I and then 
leaving the surface tangentially to the field point, is shown. 

complex y plane and evaluating the residues, we obtain 

u8;r~ u?tr + ~ 2 ~ [A(t..t)]-\6/k1a)-! 
..t 2{3 (N - 1) 

1T 

X e-ia (r2 - a2r! (1 + e-iITV..t)-l 

x { f f [ex.2k1
1S2; - iex.{3S2;_1(N2 - 1)!] 

C' 

x (r sin Or! 

x [e-iv;.n + e-iV..t(2,,-m+ii] 

x sin ()' d()' dIP'} +{f f [ex.2k1
1S2; - iex.{3S2;_1 

L 

X (N2 
- 1)!](r sin Or! 

x [e-iV..t(2lT-m + e-iV).(2u+n>+i~] 

X sin ()' d()' dIP'}. (116) 

uf;r = (us;r - u?;r) represents mainly the total contri­
bution from the waves which are radiated from the 
equivalent sources S2; and 52;_1, which travel along 
the interface an angular distance [e.g., 21T1 + a -
cos-1 (air) on the side of medium 1], which decay 
exponentially, and then leave the surface tangentially 
toward the field point r (see Fig. 8). Finally, us;p can 
be evaluated in a manner similar to the case of usop ; 
hence their analogous physical interpretation can be 
obtained. 

VI. PERTURBATION SOLUTION IN THE 
EXTERIOR OF A LARGE CONVEX ROUGH 

SCATTERER 

The zeroth-order solution is the solution for the 
special case of a large convex smooth and deter­
ministic scatterer for which an asymptotic solution 
in the exterior of the scatterer can be constructed from 
the geometrical theory of diffraction.4- 7 The higher­
order solutions can then be constructed by observing 
the following relation between the zeroth-order 
solution of spherical scatterer and its higher-order 
solutions and then using it. 
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Upon comparing (66) to (107) and (80) to (113), 
we find that 

[ 

lim (u~r)] 
ua = 2lfk a2S. cOS'Yl ro->a,8->n 

SJr J 1 2J-l ./ 

I: :Ru -- :RUj 

X sin ()' d()' dcp' (117) 

The combination of (117) and (118) implies that the 
geometric optics wave of usi is given by 

u~ = 2i f f kla2S2i_l cos 'YJ [ ro->l!~->n (u~) ] 

:Ru -- :Rnj , l)12 -- l)12j 

x sin ()' d()' dcp', j = 1,2,3, .. '. (119) 

To generalize (119) to the case of diffraction of 
waves by a large, convex, rough object, we replace 
each "a" in (119) by the local radius of curvature a. 
Hence the geometric optics wave of the higher-order 
solution is given by 

V~ = 2i f f kla282j_l cos if 

[ 

lim(V~) ] 
X TO->o; dA 

:Ru -- jiu j' l)12 -- "G12j , 

j = 1,2,3, .. " (120) 

where dA is the increment of solid angle and the tilde 
denotes the local behavior. 

The diffracted wave of the higher-order solution 
can be obtained from the diffracted wave of the 
zeroth-order solution in a similar way. Because of 
the complexity we only give the formula for VBr).: 

V~T). = - (2kl)~ei(U/12)ff{ lim aA(l).)(6k~a2)! 
1T ro-+a; 

. [kl
1821 - iOC-lP82j_l(N2 - 1)1] 

x (r~ - a2r!V~r).} dA, j = 1,2,3, .... 

(121) 

VII. MEAN WAVEFUNCTION AND MEAN 
INTENSITY 

The mean values of the wavefunction and intensity 
in the exterior of the scatterer are, respectively, 

0() 

<Vi + Vs) = Vi + V sO + Ie1<VSj)' (122) 
j=1 

and 

<IVsI
2) = IVsO I2 + e2 Re (UsO(USl» 

+ e2[2 Re(UsO(US2» + <IVslI2)] + O(e3
). (123) 

Upon examining our problem, it is found that the 
statistics of this problem are contained only in the 
equivalent sources 821- 1 and 82j (j = 1,2,3, ... ,). 
Therefore, from (120) and (121), we have 

j = 1,2, 3, .. " (124) 
and 1 

(V~r).) = C:l) e-i (nU/12>j fL~i~ d(6k;a2)!A(l).)[kl\82j) 

- iOC-lP(82j_l)(N2 - 1)~](r~ - a2)iV~r).} dA, 

j = 1,2, 3, .. '. (125) 

Similarly, the asymptotic expansion of <lUsI 2) can be 
obtained from (120), (121), (123), (124), and (125)­
except that it is very complex. Since 821- 1 and 82j 
contain various combinations of j, (ajla~2)' and 
(ajla~3) in sums and products, once all of the moments 
of these various combinations are known, then the 
mean values of the scattered wavefunction and the 
scattered intensity are determined. 
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APPENDIX 

Debye asymptotic forms for large argument and 
index, with 11 < z, are 

ml)(z) I'oJ (~ z sin T r: 
x exp [iZ(Sin T - T cos T) - i~} 

m2)(z) I'oJ G z sin T r1 

x exp [ -iz(sinT - TCOST) + i~} 
H~l),(z) I'oJ i sin TH~l)(z), 
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and In connection with Legendre functions, Q~l)(COS 0) 
and Q~2)(COS 0) are defined as 

where 
T = cos-l (viz). 

Q~l)( cos 0) = ~ [P.( cos 0) + i'; Q.( cos 0)] 

and 

For argument and index both large, and v r-J z, we 
have the Airy function representations for the Hankel 
functions as 

Q~2)(COS 0) = ~ [P.(COS 0) - i .; Q.(cos 0)]. 

and 

where 

H~2)(Z)""'" (2/7T)ZA(t), 

H~2)'(Z)""'" -(217T)Z2A'(t), 

(ojov)m2)(z) ~ (2j7T)Z2A'(t), 

Their asymptotic forms are 

Q~l)(COS 0) ,....., (27TV sin Or! 

x exp [ -i(v + !)O + i~J 
and 

Q~2)(COS 0),....., (27TV sin Or! 

x exp [i(V + !)O - i ~J 

0< 0 < 7T. 
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Local Characterization of Singularities in General Relativity*t 
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Palmer Physical Laboratory, Princeton, New Jersey 
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We formulate a new approach to singularities: their local description. Given any incomplete space-time 
M, we define a topological space, the ''g boundary," whose points consist of equivalence classes of incom­
plete geodesics of M. The points of the g boundary may be thought of as the "singular points" of M. 
Local properties of the singularity may now be described in a well-defined way in terms of local properties 
of the g boundary. For example, the notions: "dimensionality of a singularity," "past and future of a 
singular point," "neighborhood of a singular point," "spacelike or timelike character of a singularity," 
and "metric structure of a singularity" may all be expressed as properties of the g boundary. Two 
applications of the g boundary outside of the realm of singularities are discussed: (1) In the case in 
which the space-time M is extendable (for example, Taub space), the g boundary is shown to be that 
regular 3-surface across which M may be extended [in this case, the Misner boundary between Taub and 
Newman-Unti-Tamburino (NUT) spacel. (2) With a slight modification of the definitions, theg boundary 
of an asymptotically simple space-time is shown to be Penrose's surface at "conformal infinity." The 
application of the g boundary technique to singularities is illustrated with a number of examples. The 
g-boundary structure of one particular example leads to our consideration of non-Hausdorff space-times. 

I. INTRODUCTION 

Singularities in general relativity are normally 
defined in terms of geodesic completeness. l Yet when 
one hears the word "singularity," he imagines that 
the temperature, the mass density, or perhaps the 

• This work was carried out under a National Science Foundation 
Graduate Fellowship. 

t Submitted in partial fulfillment of the requirements of the 
degree of Doctor of Philosophy, Princeton University, Princeton, 
New Jersey. A brief summary of this work will appear in the 
Proceedings o/the Battelle Summer Recontres, Seattle, Washington, 
1968 (W. A. Benjamin, Inc., New York) (to be published). 

t Present address: Department of Mathematics, Birkbeck Col­
lege, London, England. 

1 See, fOT example, C. W. Misner, J. Math. Phys. 4, 924 (1963); R. 
Penrose, Phys. Rev. Letters 14, 57 (1965); R. Geroch (unpublished). 

curvature becomes infinite. Thus, one might ask of 
a space-time: "Does this or that physical quantity 
grow without bound in the vicinity of the singularity?" 
This very question presupposes that there is some 
"singular point" at which the singularity resides, and 
that we may ask questions about the vicinity of that 
point. But geodesic incompleteness does not at all 
provide us with the "singular points" or their "neigh­
borhoods" that we should like to have in order 
to phrase our physical questions. We present an 
approach to the problem of bridging the gap between 
geodesic incompleteness on the one hand and our 
physical notions about singularities on the other. We 
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where 
T = cos-l (viz). 
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x exp [ -i(v + !)O + i~J 
and 

Q~2)(COS 0),....., (27TV sin Or! 

x exp [i(V + !)O - i ~J 
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(0) 

( b) 

FIG. 1. An example illustrating that the boundary of a given 
manifold is not in general unique. 

describe a construction by which, given any incom­
plete space-time, one may define the requisite singular 
points and describe their local properties.2 

It may appear at first sight that in all practical cases 
one may, by inspection, define the appropriate 
singular points and attach them to form a boundary 
for the space-time. Thus, so it might appear, no 
complicated prescriptions are necessary. But appear­
ances are notoriously coordinate dependent. We first 
give a simple example to show that the boundary of a 
manifold3 is not uniquely determined by the manifold 
itself. Consider an open disk, Dl , in polar coordinates: 
r < I, (J E (0,217] [Fig. I (a)]. A boundary a may be 
appended to Dl by inspection: the circle r = I. We 
now construct a different boundary for the same 
manifold. Map our original disk, D1 , diffeomorphi­
cally onto another identical disk, D z , where the 
mapping is shown in Fig. I(b) by drawing the image 
in D2 of the lines (J = const in D1 . (The exact form of 
the mapping is not important here.) But now the 
natural boundary for D2 [the circle r' = I in Fig. I (b)] 
forms also a boundary, a', for D1 • With the boundary 
a, each of the lines (J = const in Dl end at a different 
boundary point, whereas with a' a number of these 
lines end at the same boundary point, namely P. 
Suppose that Dl were a (two-dimensional) space-time 
and that the mass density became infinite near the 
point Q while remaining finite near R in Fig. I(a). 
Assume we had "mistakenly" put the boundary a' 

2 A construction along similar lines has been discussed by S. W. 
Hawking, "Singularities and the Geometry of Space-Time." (Unpub. 
Iished essay submitted for the Adams Prize, Cambridge University, 
December, 1966.) 

• For the definition of a manifold with boundary, see J. R. 
Munkres, Elementary Differential Topology (Princeton University 
Pres~, Princeton, N.J., 1963), p. 3. 

on D1 , and then asked whether or not the mass density 
becomes infinite near the "boundary point" P. It is 
clear that our question could not be meaningfully 
answered, for the distinct points Q and R of a are 
collected into the single point P of a'. This example 
illustrates our point: the manifold alone will not tell 
one how a boundary of "singular points" should be 
affixed-one requires some additional structure such 
as a metric, and then a prescription for fixing the 
boundary given that metric. 

In Sec. II we discuss the topological properties of 
singularities. Given any geodesically incomplete 
space-time M, we define equivalence classes of its 
incomplete geodesics, two geodesics being in the 
same equivalence class if they approach each other 
(in a sense to be defined precisely) as the geodesics 
approach the singularity. The space of equivalence 
classes is called the "g boundary." The g boundary, 
endowed with a topology, is to represent the "singular 
points" of the space-time. A prescription is given for 
attaching the g boundary to the original space-time 
M to form the "space-time with g boundary" M. In 
the topological space M the notions of a singular 
point and its neighborhood are well defined. 

In Sec. III we consider the problem of assigning a 
causal, differentiable, and metric structure to the 
g boundary. The future and past of each g-boundary 
point are defined. The notions of future and past are 
used to define "spacelike" and "timelike" g bound­
aries. Conditions are given under which one may define 
a differentiable and metric structure on a. The 
definitions in Sec. III are useful in particular in the 
analysis of the (highly symmetrical) cosmological 
models in general relativity. 

In Sec. IV we discuss two applications of the g 
boundary outside of the field of singularities: 

I. A prescription is given to determine whether or 
not a given space-time is extendable and, if so, to 
carry out an extension. 

2. A technique is given to construct the surface at 
conformal infinity defined by Penrose4 for the study 
of asymptotically flat spacetimes. 

Finally, in Sec. V, we consider a number of 
examples. The g boundaries of several well-known 
singular solutions of Einstein's equations are in­
vestigated. 

II. CONSTRUCTION OF THE g BOUNDARY 

The method we shall describe for identifying 
geodesics to form the g boundary is basically simple. 

4 R. Penrose, in Relativity, Groups, and Topology, C. DeWitt and 
B. DeWitt, Eds. (Gordon and Breach, Science Publishers, Inc., New 
York, 1964), p. 565; R. Penrose, Proc. Roy. Soc. (London) A284, 
159 (1965). 
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M 

thickening, y 

DIy \/~~/ 

FIG. 2. The use of the "thickening" to restore the boundary of a 
given incomplete space-time. 

Complications arise only in the course of generalizing 
the technique to accommodate more pathological 
space-times. We consider first. therefore, a special 
case. Let V be a geodesically complete space-time. 
Let S be a 3-submanifold of V which divides V into 
two disjoint parts, M and M'.s We are to be given only 
the 4-geometry M. To what extent can we now recover 
the surface S? 

Consider the collection of all incomplete geodesics 
in M. These are precisely the geodesics of M which, 
when extended in V, pass through S. We wish to find 
a criterion, using only the geometry of M, to group 
these geodesics into equivalence classes, two geodesics 
being in the same equivalence class if they pass, when 
extended in V, through the same point of the surface 
S. Each equivalence class will then represent one 
point of S. Let y be any incomplete geodesic in M. 
We may describe y by its initial conditions: anyone 
point on y and the tangent vector to y at this point. 
Consider now the family of geodesics which results 
from small variations in these initial conditions. This 
family traces out a four-dimensional tube in M which 
we call a thickening of y (Fig. 2). If y' is another 
incomplete geodesic in M, we write y' ,......, y if y' enters 
and remains inside every thickening of y. In 'this 
example, ,......, is an equivalence relation. The equiv­
alence classes reproduce the points of the surface S, 
i.e., y' ,......, y if and only if y and y' have the same 
end point on S. 

In a general incomplete space-time, it will not be 
possible to find a regular 3-surface on which each 
incomplete geodesic terminates. We may, however, 
generalize the above construction so that it will be 
applicable to any space-time. The resulting equivalence 
classes of geodesics will then constitute the g boundary. 

Let M be any space-time. Denote by G the collection 

• To simplify the discussion at this stage, let us also assume that 
every geodesic beginning tangent to S first enters M' rather than 
M. 

of all nonzero vectors in M, that is, a point of G 
represents a vector at some given point of M. Since 
the eight-dimensional manifold G is the tangent 
bundle6 of M with the zero vectors 9mitted, we can 
G the reduced tangent bundle of M. Each element of 
G may be written in the form (P, ~a), where ~a is a 
vector at the point P of M. The point (P, ~a) of G 
uniquely determines that geodesic in M which begins 
at P and has its initial direction and affine parameter 
determined by the equation 

dxal =~. 
d)' p 

It is convenient to use the word "geodesic" here to 
mean a parameterized curve having the properties: 

1. The curve has one end point, and has been 
extended as far as possible in some direction froq1 
that end point. 

2. The curve is a geodesic with the given parameter 
as affine parameter. 

3. The affine parameter vanishes at the end point 
and is positive elsewhere on the curve. 

There is a one-to-one correspondence between the 
points of the reduced tangent bundle and the geodesics 
of M. Define a scalar field cp on the manifold G as the 
total affine length of the corresponding geodesic in 
M. Thus, cp is infinite if and only if the geodesic in 
question is complete. Denote by G[ ("I" for "incom­
plete") that subset of G on which cp is finite. 

Define the 9-manifold H = G X (0, (0), and the 
fonowing two subsets of H: 

H+ == {(P, ~a, a) E H I cp(P, ~a) > a}, 

Ho == {(P, ~a, a) E H I cp(P, ~a) = a}. 

There is a natural map7 ':F: H+ --+ M defined as follows : 
Given a point (P, ~a, a) of H+, let ':F(P, ~a, a) be that 
point of M which results from traversing an affine 
distance a along the geodesic (P, ~a). 

We next define a topology on G[. Let 0 be any 
open set of M. We associate with 0 a subset S(O) of 
G[ as follows: 

S(O) == 
{(P, ~a) E G[ I there exists an open set U in 
H containing the point (P, ~a, cp(P, ~a» of Ho 
such that ':F(U n H+) cO}. 

Thus, if 0 is a sufficiently sman open set of M whose 
closure is compact, then S( 0) is the empty set. One 

• See, for example, N. Steenrod, The Topology of Fibre Bundles 
(Princeton University Press, Princeton, N.J., 1951), p. 5. 

7 See, for example, N. J. Hicks, Notes on Differential Geometry 
(D. Van Nostrand Co., Inc., Princeton, N.J., 1965), p. 131. 
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can easily verify that, given any two open sets 0 1 and 
O2 of M, the subsets S(Ol) and S(02) of G1 obey 

S(Ol) n S(02) = S(Ol n O2), 

It follows8 that the collection of sets S(O), where 0 
ranges over all open sets of M, serves as a basis for the 
open sets of a topology, on G[. 

We use this topology on G[ to form equivalence 
classes of the elements of Gz as follows. If (f. and {3 
are two elements of G [, write (f. ~ {3 if every open 
set in Gz containing (f. also contains {3, and every open 
set containing {3 also contains (f.. The relation ~ is 
an equivalence relation. The collection of equivalence 
classes will be denoted by a and referred to as the 
g boundary ("g" for geodesic). The topology we have 
defined on Gz induces9 a topology on 0.10 

In fact, there are several different ways to form the 
equivalence classes which define the g boundary. 
The identification described above is the weakest in the 
sense that points of Gz are identified only if they 
cannot be distinguished topologically, i.e., if they 
always appear in the same open setsY The resulting 
g boundary satisfies the separation axiom1z Tu. A 
stronger identification is as follows: write (f. ~ {3 if 
for every continuous function f on G[, f«(f.) = f(f3).13 
The g boundary as defined by this identification 
scheme satisfies the separation axiom T3 • It is also 
possible to construct equivalence relations on Gz so 
that the topology of the g boundary satisfies separation 
axioms T1 or Tz .14 In many examples it makes no 
difference which type of identification is selected; the 
resulting g boundaries are identical. However, there 
are cases in which the g boundary depends on the 
choice of identification scheme. In the last example of 

8 See, for example, J. G. Hocking and G. S. Young, Topology 
(Addison-Wesley Publishing Co., Reading, Mass., 1961), p. 6. 

9 That is, if we write 7T for the mapping Gj -+ il, then a subset 
U of 0 is open if 7T- 1( U) is open in G I' 

10 There is another way to obtain a topology on 0. The manifold 
topology on G induces a topology on G j' which is in general different 
from the one we have defined. We could define the topology on the 
g boundary to be that induced by this new topology on G1 . 

11 See W. J. Pervin, General Topology (Academic Press Inc., New 
York, 1964), p. ISS. 

12 See Ref. 8, p. 37. 
13 E. Chech, Ann. Math. 38,823 (1937); R. Vaidyanathaswamy, 

Set Topology (Chelsea Publishing Co., New York, 1960), p. 154. 
14 Let S be any topOlogical space, and let A be an equivalence 

relation on S. A may be represented as a subset A of S X S in the 
following way. The point (ex, f3) of S X S is in A if and only if ex and 
f3 are identified under the equivalence relation A. The intersection of 
any collection of equivalence relations, defined as the intersection of 
the corresponding subsets of S X S, gives a new equivalence relation. 
An equivalence relation will be said to be of type T, (i = I, 2) if the 
induced topology on the equivalence classes obeys separation 
axiom Ti • Define: 

Al = the intersection of all Tt equivalence relations on S, 
A. = the intersection of all T. equivalence relations on S. 

It is not difficult to show that At and A2 are, respectively, Tl and T2 
equivalence relations on S. 

Sec. V, all the interesting properties of the g boundary 
would be destroyed if the T3 identification were 
employed. 

So far the g boundary exists only as an abstract 
topological space. We now attach G to the space-time 
M. Define 

M=M U G, 

the disjoint union. A subset (0, U) of M, where 0 is 
an open set of M and U is an open set of a, will be 
called open in M if S( 0):::> U. One can verify that the 
intersection of two such open sets is open. These open 
sets on M are a basis for a topology on M. The restric­
tion of the topology on M to M reproduces the mani­
fold topology on M, while the restriction to a 
reproduces the topology of the g boundary. M will be 
called the space-time with g boundary_ If U = S(O), 
(0, U) will be called a full open set of M. 

On applying these definitions to the example at the 
beginning of this section, we see that the g boundary 
is just the surface S. The space-time with g boundary 
M is a manifold with boundary: the space-time M with 
the boundary surface S attached. 

The definitions of the g boundary and of the space­
time with g boundary are the basic concepts of this 
paper. Given any incomplete space-time M, we may 
define the two topological spaces, G and M. The 
points of a then represent the singular points, their 
neighborhoods in Sf the neighborhoods of the singular 
points. Thus, the statement "the mass density becomes 
infinite at the singularity" may be expressed in precise 
terms as follows: "The point e of the g boundary has 
the property that for every Po, however large, there is 
an open neighborhood (0, U) of e in M such that 
P > Po in 0." Many other notions about singularities 
may be similarly described. Note in particular that the 
g boundary, being a topological space, may be assigned 
a dimension15 if a turns out to be a separable metric 
space. 

It should be emphasized that though we have given 
a prescription that succeeds in principle in defining 
the g boundary for any space-time, in practice the 
construction may be quite difficult. In particular, one 
needs a considerable amount of information about 
the geodesics. In many of the known solutions of 
Einstein's equations, integrals for the geodesics may 
be obtained up to quadratures, and these suffice for 
the construction. But the known solutions are highly 
symmetric, and one cannot expect such a reduction 
to be possible in general. Since only the "asymptotic 
properties" of the geodesics are relevant, one might 
hope to find a method to carry out the g-boundary 

15 See Ref. 8, p. 145. 
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construction without any detailed properties of the 
geodesics. Unfortunately, this hope has not yet been 
realized. We have seen, however, that some properties 
of the metric must be used to define a g boundary. 
Since the geodesics are among the simplest such pro­
perties, it is not clear where one should look for a dif­
ferent, more easily applied, construction which is still 
applicable to even the most pathological space-times. 

Finally, we mention that no guarantee can be 
offered as to the uniqueness of the g boundary con­
struction here. Our definitions were obtained by trying 
one definition, finding an example for which that 
definition did not perform as expected, then trying 
another definition, etc. It is certainly possible that a 
more natural definition for the g boundary exists, 
especially in light of the lack of an acceptable definition 
of a singularity.16 As one example of a possible 
modification, one might let the reduced tangent 
bundle G consist, not of all nonzero vectors in M, 
but only of the nonzero timelike vectors. One then 
forms the g boundary from equivalence classes of the 
incomplete timelike geodesics. Since there are ex­
amples17 of space-times which are timelike complete 
but neither spacelike nor null complete, the new 
g boundary would differ in general from the g 
boundary we have defined here. 

ill. FURTHER PROPERTIES OF THE g 
BOUNDARY 

Use of the space-time with g boundary defined in 
Sec. II apparently solves the problem of describing 
local properties of singularities. Why, then, should 
one consider any further structures on the g boundary? 

The first reason is that there are still several 
intuitive notions about singularities which cannot be 
expressed in terms of their topological features alone. 
Is the Schwarz schild singularity spacelike? Does the 
presence of a magnetic field in a collapsing star cause 
the coUapse to proceed more quickly in directions 
paralJd or perp~ndicular to the field lines? Which 
points of .the Reissperr;l'l"ordstrom solution may be 
affected by informat~Qn.coming into the space-time 
from the singularity? One would like to give a meaning 
to the undefined notions expressed by these questions. 

Secondly. the topological properties of the g 
boundary are not alone sufficient to begin to classify 
singularities. We shall discuss in Sec. V examples of 
space-times whose g boundaries are topologically 
identical, but whose singularities seem intuitively to 
be quite different. 

16 W. Kundt, Z. Physik 172, 488(1963); L. Shepley, thesis, 
Princeton University, 1965; R. Geroch (unpublished). 

17 W. Kundt, Ref. 16. 

A. Causal Structure 
We consider first the following two problems: 
I. Determine the "future" and "past" of each 

point of the g boundary. 
2. Define "spacelike" and "timelike" g boundaries. 

These two aspects of the g boundary are considered to­
gether because they both involve only the causal struc­
ture of the space-time (i.e., "Can event A influence, 
by means of a signal, event B?"). Kronheimer and 
Penrose18 have shown that the causal relations on a 
set can be discussed without reference to a metric, a 
differentiable structure, or even a topology on that set. 
Thus, one comes to think of the causal structure as the 
first and most basic relation to be specified on a 
collection of events, rather than a subsidiary property 
derived as an afterthought from the metric. 

Let C be any directed curve in M. We say C has an 
end pOint at the point e E a if for every open neighbor­
hood (0, U) of e in Si, C enters and remains in O. Of 
course, it may be that C has no end point in a given 
direction. It is easy to show, however, that if C does 
have an end point, then that point is unique if n is 
Hausdorff. A curve in M having at least one end point 
in each direction is said to connect those points. Let e 
be any point of O. Define thefuture19 of e: 

[+(e) == 
{Q E nl there exists a timelike curve C in M with 
a future end point Q and a past end point e}. 

The past, [-(e), is similarly defined. Note that [+(e) 
and [-(e) are well defined for every g-boundary point 
e without restriction on the space-time. 

Let us give an example to show the utility of this 
definition. Consider the Reissner-Nordstrom solu­
tion20 (Fig. 3). One often hears the remark: "The 
event P may be influenced by information coming into 
the space-time from the singularity." What does that 
mean? Does it mean that there are incomplete past­
directed timelike or null geodesics from the point 
P'l That is false. Does it mean that there are inextend­
able pas.t-directed timelike curves from P of finite 
total length (i.e., the curve C in the figure)? This will 
not do either. for there are timelike curves of finite 
total length from any point of any spacetime. In 
fact, it is hard to give any meaning at all to the words 
"The singularity may inftuence P." except to say that 
Fig. 3 leaves one with an impression of this sort. The 
remark P E [+(0) is a precise statement of this im­
pression. 

18 E. H. Kronheimer and R. Penrose, Proc. Cambridge Phil. Soc. 
63,481 (1967). 

11 Throughout this discussion, we must assume that the space-time 
is isochronous, at least in the region under consideration. Only under 
this assumption can we meaningfully distinguish future from past. 

.0 See B. Carter, Phys. Letters 21, 423 (1966). 
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FIG. 3. The Reissner-Nordstriim solution. The point P 
is to the future of the g boundary (r = 0). 

We next come to the question of determining 
whether a given g boundary should be considered 
spacelike, timelike, or perhaps neither. Unfortunately, 
a number of possible definitions come to mind, all of 
which yield the expected answers in common ex­
amples. We therefore present definitions of spacelike 
and timelike g boundaries which are fairly restrictive, 
so that many g boundaries will be in neither class. 
Perhaps a better understanding of this issue in the 
future will indicate the appropriate modifications or 
generalizations of the definitions given here. 

We wish to have the spacelike or timelike character 
of a g boundary be a local property, i.e., a property 
unaffected by changes in the geometry in regions 
away from the g boundary. But the ordinary notion of 
the future and past of a point involves global con­
siderations. For example, there are space-times having 
the property that the future of each point is the entire 
4-geometry. We must define, therefore, the local 
future of a point. Let e E a, and let (0, U) be a full 
open neighborhood of e in M. Define 

[+(e; 0, U) = {the future of e in (0, U)}, 

and similarly for the local past, [-(e; 0, U). We say 
that a is spacelike at e if there exists a full open 

·FIG. 4. The defininion of a spacelike g boundary. 

Open neiohborhood of 
e contained in 1+(e';O,U) 

FIG. 5. The definition of a timelike g boundary. The 
point eH and its local past have been suppressed. 

neighborhood (0, U) of e in M such that, for all 
e' E U, there is a full open neighborhood (0', U') of 
e' with 

[I+(e; 0, U) U [-(e; 0, U)] (") (0', U') = rp, 
where rp is the empty set (Fig. 4). We say that a is 
timelike at e if for every full open neighborhood 
(0, U) of e in M there exist two points, e' and e", of 
U such that [+(e'; 0, U) (") [-(e"; 0, U) contains an 
open neighborhood of e in M (Fig. 5).21 

We have not defined a null g boundary because the 
null character of a surface is a causal property only 
when it obtains over a region. For example, the 
surface x = t + t 3 in Minkowski 3-space is null only 
on the line x = t = 0, yet this surface cannot be 
distinguished by its causal properties from an every­
where timelike surface. In fact, it is difficult to see why 
one would wish to characterize a surface as null 
unless it is also regular (in some sense). But when the 
g boundary is sufficiently regular, a causal definition 
of null is unnecessary as the metric properties we 
discuss next will provide the appropriate character­
ization. 

B. Differentiable and Metric Structure 

We consider next the construction of a differentiable 
and metric structure on the g boundary. In order to 
define these structures, it is necessary to impose ve_ry 
strong conditions on the space-time. One would not 
expect these conditions to hold in general in solutions 

21 The following are examples of weaker definitions. a is space­
like at e E a if there exists a full open neighborhood (0, U) of e such 
that [[+(e; 0, U) U [-(e; 0, U)]11 U = </>. a is timelike at e if for 
every full open neighborhood (0, U) of e, [+(e; 0, U) II U;06 </> 
and [-(e; 0, U)1l U;06 </>. 
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of Einstein's equations. In particular, no differentiable 
structure can be defined on a region of a unless that 
region is a topological manifold. 

Let 0 be any open set of the space-time M, and let 
(0, U) be the corresponding full open set in M. Since 
the points of a are equivalence classes of elements of 
G[, we have a natural map rr:G[ -+ a. Define, for each 
open set 0 of M, the following subset of G[: 

J(O) == {(P, ;«) E rr-I(U) I cp(P, ;a) = I, and the 
geodesic in M associated with the element 
(P, ;«) of G[ lies entirely within the open set O}. 

We say a has a differentiable structure at the point e 
of a if there exists a full open neighborhood (0, U) of 
e in M and a subset J of J( 0) such that the following 
four conditions are satisfied: 

1. J includes almost all points of J( 0). 22 

2. J is a differentiable submanifold of the reduced 
tangent bundle G. 

3. For each element e of U, A. == rr-l(e) n J is a 
differentiable submanifold of J. 

4. J may be written diffeomorphically as a cross 
product, A x B, of two differentiable manifolds, 
where for each element of B the submanifold A is one 
of the Ae. We have, therefore, a one-to-one mapping 
A: U -+ B. We require further that this mapping be a 
homeomorphism. 
The differentiable structure of B and the mapping 
A: U -+ B automatically give us a differentiable 
structure on the open region U of a. 

From the definition we see that the differentiable 
structure, where defined, is unique. Note also that if 
a differentiable structure exists at a point e E a, then 
the structure is defined in a neighborhood U of e. The 
collection of all points of a at which a differentiable 
structure is defined forms a differentiable manifold. 
Returning to the example at the beginning of Sec. II, 
we see that the differentiable structure defined here 
reproduces the differentiable structure of the surface 
S. 

A differentiable structure on the g boundary is 
useful only insofar as it leads to the introduction of a 
metric structure. We next discuss this problem. 

Suppose that at the point e, a has a differentiable 
structure characterized by the open neighborhood 
(0, U) of e in M, the subset J of J(O) , and the identi­
fication J = A x B. Let V be a (contravariant) vector 
in the g boundary at the point e. We have a diffeo­
morphism A: U -+ B. Therefore, the vector V in U 
determines a vector V' at the point A(e) of B. Since 

22 Our permitting some points of j( 0) to lie outside of J is not a 
minor formality. With "almost all" replaced by "all," the g boundary 
of the region x > ,3 in two-dimensional Minkowski space could not 
be given a differentiable structure. 

J = A x B, the vector V' at A(e) determines a vector 
field v on the submanifold Ae of J, v determined only 
up to the addition of an arbitrary vector tangent to 
the surface Ae. Make a particular choice of the arbi­
trary vector field tangent to Ae. The resulting vector 
field v on Ae will be called a representation of V. We 
shall describe the properties of vectors in a in terms of 
their representations in J. 

Let Vbe a vector at e E a, and let v be a representa­
tion of V. The vector field v evaluated at the point q 
of Ae will be denoted by vq • Since Ae e Je G [, the 
point q of Ae is a point (P, ;«) of G [. Let xa(A.) denote 
the geodesic in M associated with the element (P, ;a) 
of G [, where for each value of the affine parameter 
A, x«(A) is a point of M. From the way we have defined 
J and Ae , it follows that x(O) = P, that A has the 
range [0, 1), and that the geodesic x«(A) is a member of 
that equivalence class of geodesics denoted bye. The 
vector va at the point q of J determines a Jacobi field23 

v~(A) on the geodesic x«(A) as follows. Let E be infini­
tesimal, so EVq is an infinitesimal vector in J at the 
point q. This vector may be thought of as joining 
the point q to a nearby point q' of J. We may write the 
geodesic corresponding to the point q' of J in the form 
x«(A) + EV~(A). v~(A) is the Jacobi field in M associated 
with vq • Choose a fixed number ,10 E [0, 1). Then 
v~(Ao) is a vector at the point x«(Ao) of M. Parallel 
transport this vector along the geodesic x«(A) to the 
endpoint P of this geodesic. We thus determine a vector 
at P, which we denote by v~(Ao). For each value of 
,10 in the interval [0, 1), v~(Ao) is a vector at P. We 
shall call v~(Ao) the vector function associated with vq • 

Intuitively speaking, our construction is as follows. 
An infinitesimal vector V at the point e of a may be 
considered as joining e to a nearby point e' . Let y be 
any geodesic in M with endpoint e. (The freedom in 
choosing y corresponds to the freedom in choosing the 
point q on Ae.) The vector V determines a Jacobi field 
on y only up to the addition of an arbitrary Jacobi 
field which joins y to another geodesic which ends at 
e. [The freedom in choosing the Jacobi field corre­
sponds to the freedom to add to any representation of 
V an arbitrary vector tangent to Ae (Fig. 6)]. The 
limit of the norm of the associated vector function, if 
independent of the point q and of the representation 
chosen, will now give us the norm of the vector V 
in a. 

Let Tq be the tangent space to the manifold J at the 
point q E J. A stratification of Tq is a sequence 
T1 T2 ... Tm of subspaces of the vector space Tq 

q' Q' 'q 

2. See, for example, J. Milnor, Morse Theory (Pr.inceto~ Univer­
sity Press, Princeton, N.J., 1963), p. 77. A Jacobi field IS a solu­
tion of the equation of geodesic deviation. 
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e 

v.cto~ 
in it 

FIG. 6. The representation of vectors in the g boundary 
as Jacobi fields in the space-time M. 

such that: 
1 For each i Ti ~ Ti-l and Ti ~ Ti-l. • , q q q q 

2. T;' = Tq • . 

3. There is a collection of positive functions rCA) 
(i = 1, 2, ... , m), with limJi/Ji+1 = 0, having the 

),->1 

property T! = {Vq E TQllim V;(),)/P(),) exists (it may 
).-1 

be zero)}, where V;(),) is the vector function as-
sociated with vq • 

There always exists at least one stratification,24 and 
in general there will exist many stratifications of Tq • 

We see that a stratification of Tq is a separation of Tq 
into vector subspaces according to the behavior of the 
corresponding vector functions. Those elements of 
Tq whose vector functions approach zero most rapidly 
as ), -- 1 are in the subspace T!, while those elements 
whose vector functions approach infinity most rapidly 
are in T;' but not in T;'-I. 

We return now to the manifold J. As before, define 
A. == 7T-l(e) n J. A global stratification of the surface 
A. is a stratification (T~ ,P) at each point q of A. such 
that: 

1. For each i, the subspace T! is a differentiable 
function of q. 

2. The ru .. ) can be chosen to be independent of q. 
3. There is an integer p, 1 S P S m, such that 

T'P = TA ,where fA is the subspace of T. tangent to 
q e • 

the surface A. at q. 
4. If va is any representation of a vector V in 0, 

,. Choose any collection of functions flO.) such that 

Iimf l lfHI = O. 
),->1 

Define the T! as in property 3 above. By choosingfm to go to infinity 
sufficiently quickly as A. --+ I, we may have T;' = T •. We have now 
satisfied all the properties of a stratification except possibly TJ ~ T~-l. 
If any two consecutive subspaces T; are equal, say T' and T!, we 
simply drop the functi?n('from our lis~. Then T: isno \on~e~ among 
the TI. Repeating thIS procedure untIl all the n are dIStInct, we 
obtai~ a stratification of T •• 

and if Vq E T! at anyone point q of A., then Vq E T; 
at all points q of A •. 

Whereas a stratification is a separation of the 
tangent space Tq at a single point q of A., a global 
stratification is a stratification at every point of A •. 
Condition 3 states that the behavior of the vector 
function is independent of the representation chosen. 
Conditions 2 and 4 state that the behavior of the 
vector function is independent of the point q on A •. 

A global stratification (T! ,P) of A. will be called a 
metric stratification if there is a basis, V~I), V~2), ••• , 

v~n), for Tq at each point q of A., and a set of m 
integers, 1 S a1 < a2 < ... < am = n (n is the di­
mension of the manifold J) such that: 

1. The vectors V~k) for k S ai span T:. 
2. For each k > a1) (p is the integer defined in 

condition 3 of the definition of the global stratifi­
cation), V~k) is a representation of a vector in 0. 

3. If k is an integer in the interval ai- 1 < k S a j , 

then lim v~k)a().)/p().) exists and is nonzero. 
),->1 

4. If k and j are integers in the intervals at-! < 
k S ai' ai_1 <j S ai' then 

lim gaflv~k)a(),)v~j)fl(),)/[P(),»)2 (i not summed) 
),->1 

is independent of the point q. 
It is not difficult to show that if a metric stratifica­

tion exists at all, then it is unique. Further, any global 
stratification can be obtained by merely combining 
several of the subspaces T~ of a metric stratification. 

We shall be concerned here exclusively with the 
metric stratification because the g boundary of every 
space-time we have analyzed has turned out to have 
either no differentiable structure at all, or else a 
metric stratification. We could have proceeded 
directly to the metric stratification without introducing 
all the intermediate concepts. We have not done this, 
however, in order to emphasize the existence of an 
almost infinite variety of stratifications, i.e., of types 
of metric structures of the g boundary. If one is to 
take the metric properties of the g boundary seriously, 
it will be necessary to design the stratification to fit the 
g boundary under study. The basic idea is straight­
forward and appealing. The norm of a vector on the 
g boundary is given by the limit of the norm of its 
associated vector function. Our mathematical expres­
sion of this idea gives the appearance of being arbitrary 
and complicated. Perhaps there is some simple way to 
discuss this great variety of metric properties of the 
g boundary. 

Suppose now that the g boundary 0 of a space-time 
M admits a metric stratification. With each contra­
variant vector V in a at e, we may associate an integer, 
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the index, defined as the smallest i such that v E Ti 
• • q q' 

where va IS a representatIOn of V. From condition 3 
of the definition of a global stratification, it follows 
that the index is independent of the representation 
chosen. We may define a metric on each subspace Ti 
by the limit in condition 4 of the definition of a metri~ 
stratification. In the metric of T;, every vector has 
zero inner product with a vector whose index is less 
than i. In particular, the metric of T~ , restricted to the 
subspace T~-l of T:, is zero. If the limit fi(J..) is zero 
as J.. - I, then each vector with index i is associated 
with a vector function which approaches zero as 
J.. - 1. In this case the metric in T;, while providing 
a metric with which vectors with index i may be 
compared, must be multiplied by zero to obtain the 
metric in o. [The limit in condition 4 above is nonzero 
only because fi(J..) - 0 as J.. - 1. Without the factors 
fi, the limit itself would be zero.] Similarly, if 
/,(J..) - 00 as J.. - 1, then the metric on Ti must be 
multiplied by "infinity" to obtain the metric on o. 
Finally, if fi(J..) approaches a finite value as J.. - 1 
[i.n which case we may, without loss of generality, set 
f'(J..) = 1], then the metric on T: defines the metric on 
o. Thus, the metric on the g boundary is much richer 
than the ordinary notion of a metric. One admits 
components having the form of functions of the 
coordinates on 0 multiplied by "zero" or "infinity." 

As an example, consider the Schwarzschild solution. 
On each incomplete geodesic, the coordinates e, cp, 
and t approach finite values as r - O. It turns out that 
two geodesics are in the same equivalence class if and 
only if their limiting values of e, cp, and t are identical. 
Thus, the equivalence classes, i.e., the points of the 
g boundary, may be labeled by these three coordinates. 
These are also differentiable coordinates on o. There 
are three subspaces T~ in the Schwarzschild solution: 
~: Jacobi fields connecting neighboring geodesics 

with the same limiting values of e, cp, and t.fl(J..) - 0 
as J..- 1. 

r;: Jacobi fields connecting neighboring geodesics 
with the same limiting value of t. f2().) - 0 as J.. - 1, 
but more slowly thanj1(J..). 

T~: All Jacobi fields. f3(A.) - 00 as J.. - 1. Note 
that r: ~ T; ~ T~. The integer p, defined in condition 
3 of the definition of a global stratification, is one. 
Nonzero vectors in 0 of the form a dO + b dcp have 
index 2. The metric in T: is d02 + sin2 0 dcp2. Vectors 
in 0 of the form a de + b dcp + c dt with c F- 0 have 
index 3. The metric in r: is dt 2• We may summarize 
this information about the metric structure of the 
g boundary of the Schwarzschild solution by writing 

ds2 = 00 dt 2 + O(de2 + sin2 e dcp2). 

This !s. just the result one would have expected by 
exammmg the form of the Schwarzschild metric for 
r> O. 

Further examples will be considered in Sec. V. 

IV. TWO APPLICATIONS 

We shall discuss two applications of the g boundary. 
I. A prescription is given to determine whether or 

not a given space-time is extendable, and, if so, to 
carry out an extension. 

2. A technique is developed to construct the surface 
at conformal infinity defined by Penl'ose4 for the 
study of asymptotically flat space-times. 

The constructions described in 1 and 2 above are 
of interest not only for their direct applications, but 
also because they demonstrate that our "equivalence 
c~asses ~~ geodesics" idea, while developed to study 
smgulanttes, also has applications to other problems. 
One is led to feel that the g boundary has some 
physical content. 

A. Extending Spacetimes 

Let M' be a space-time with boundary 0; such that 
each geodesic in M' is either complete, or else strikes 
a;. Let a~, o~, and a~ be, respectively, closed 2-, 1-, 
and O-dimensional (not necessarily connected) sub­
manifolds of M' such that 0;, o~, o~, and o~ are 
disjoint by pairs. Define 0' == 0' u a' U 0' U 0' . 
S

. :\,. I ,3 2 1 0 
mce u IS C osed, M == M - 0' is a space-time. Any 

space-time M constructed in this manner will be said 
to be extendable.25 By extending M we mean restoring, 
given only M, the space-time with boundary M'. 

These definitions coincide with the intuitive notion 
of "eliminating a coordinate singularity." For example, 
let M be the Schwarzschild solution for r > 2m. Then 
M' is the Schwarzschild solution for r ~ 2m. Given 
M', we may find a coordinate system in which the 
metric is regular also on the surface r = 2m, for each 
point of this surface is a regular point of M'. The 
Kruskal coordinates26 are one such coordinate system. 

It should be emphasized that we are not concerned 
here with the more difficult problem of extending an 
arbitrary space-time. Consider, for example, the 
interior M of a closed, nowhere differentiable curve 
drawn in Minkowski 2-space. Here, M can be extended 
to include the whole of Minkowski 2-space, yet our 
analysis would fail to bring to light such an extension. 
It would be preferable, of course, to treat the most 
general problem: the extension of an arbitrary incom­
plete space-time. An approach more general than that 

'5 :roo simplifr .the exposition, we have given an unnecessarily 
restnctt.ve ~efiOltlOn of an e:,tendable space-time. Three important 
generalizations, not treated In detail here, will be mentioned later. 

10 M. D. Kruskal, Phys. Rev. 119, 1743 (1960). 
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described here could pr.obably be developed, based 
on the g boundary and the use of normal coordinate 
systems as suggested by Szekeres.27 However, since 
the extension of space-times is essentially a practical 
problem, it may be preferable to wait until patho­
logical examples arise in practice before considering 
sophisticated techniques to deal with them. 

We now give a prescription for extending an arbi­
trary extendable space-time, as these terms have been 
defined here. The method is straightforward. One 
applies the definitions of Sees. II and III to the space­
time M, but examines the consequences in M'. 
Since each point of 0' is a regular point of M', the 
effect of each definition is transparent in M'. 

Consider first the g boundary of an extendable 
space-time M. Let y be an incomplete geodesic in M. 
In M', y must have an end point at some point e of 
0'. Suppose e E a~. Since the 0; are closed and 
disjoint, we may find an open neighborhood 0 of e 
in M' such that 0 does not intersect 0;, a~, or a~. It 
is clear that if y is a second incomplete geodesic in M, 
then y and y will appear in the same equivalence class 
if and only if y also has an endpoint at e. That is, two 
incomplete geodesics in M appear in the same equiv­
alence class if and only if they have the same end­
points on 0'. We have, therefore, a one-to-one onto 
mapping L\: a -+ 0'. Using similar arguments, one 
may verify that: 

1. The mapping L\: a -+ 0' is a homeomorphism. 
2. a has a differentiable structure. With this struc­

ture, L\ is a diffeomorphism.28 

3. Each point of 0 has a metric stratification. The 
metric on 0 is everywhere finite. With this metric, L\ 
becomes an isometry. 29 

4. The space-time with g boundary M is homeo­
morphic to M'. That is, L\ may be extended to a 
homeomorphism L\: M -+ M'. 

We have been able to restore the topological, 
differentiable, and metric structures of 0' and the 
topological structure of M' using only the space-time 
M. We must now determine the differentiable structure 
of M'. 

Define the following collection of functions on M: 

F == {II/is a function on M such that the scalar 
field/'F on Ho U H+ is a differentiable field}. 

We now define the differentiable functions on M to be 
the collection F of functions. It follows from the 
differentiability of the exponential map30 '¥ that we 

17 G. Szekeres, Pub!. Math. Deb. (Hungary) 7, 285 (1960). 
18 One must use the fact that the exponential mapping, 'Y:H + -+ M, 

is differentiable (Ref. 7, p. 131). 
II One must use the properties of Jacobi fields (Ref. 23). 
10 See Ref. 7. 

thereby fix a differentiable structure on M and that 
L\: M -+ M' becomes a diffeomorphism. 

Let us summarize the steps involved in extending an 
incomplete space-time M. 

1. Define the space-time with g boundary M == 
M U O. M will be a topological manifold,31 possibly 
with boundary. 

2. Define the collection F of differentiable functions 
on M as above. We thus impose a differentiable 
structure on M. 

3. The given metric on the subset M of M deter­
mines a unique metric on all of M by continuity. 

We have seen that if M is in fact extendable, i.e., if 
M results from cutting the submanifolds 0: from a 
space-time M', then M will be just M'. 

But what if one of these three steps should fail? 
Suppose that M is not a topological manifold, or that 
the functions F do not define a differentiable structure 
on M. Then, we are assured, M is not extendable. 

We mention three generalizations of this con­
struction. 

1. It is not necessary to require that the submani­
folds 0; deleted from M' be differentiable (COO), but 
only Co, piecewise C2. 

2. We could also have deleted from M' a 3-sub­
manifold S not a part of the boundary of M'. This 
situation would be treated in a similar way except 
that locally S would be two-sided, and so the g 
boundary of M would include each point of S twice, 
once for each side. It would then be necessary to 
identify the appropriate pairs of points to restore the 
surface S. 

3. M' might also contain a "real singularity," i.e., 
incomplete geodesics which do not terminate on 0'. 
It would then be necessary, in order to extend M, to 
isolate and ignore those points of the g boundary of 
M whose equivalence classes consist of incomplete 
geodesics which do not terminate on 0'. 

B. The Construction of Conformal Infinity 

A space-time M is called asymptotically simple' if 
there exists a space-time M' with boundary J, and a 
diffeomorphism L\ of M onto the interior of M' such 
that: 

1. L\ maps the metric gall of M into the metric 
g~p = Q2gap of the interior of M'. 

2. n is a differentiable scalar field on M'. On the 
boundary J of M', n = 0 and oan ¥= O. 

3. Every null geodesic in M' has two end points 
on J. 

It is known' that if the Ricci tensor vanishes in a 

Ii For the definition of a topological manifold, see Ref. 3, p. 3. 
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neighborhood of J, then J is a null surface. We shall 
assume throughout this discussion that J is null. 

We direct our attention to the following question: 
"How is it possible to determine whether or not a 
given space-time is asymptotically simple, and, if so, to 
find M'?" We shall show how, given the space-time 
M, M' may be constructed using a sequence of steps 
very similar to those used in extending space-times. 

In fact, it will be possible to carry out the entire 
construction using only the conformal properties of 
M. In particular, we deal with only the null geodesics. 
We must therefore slightly modify our previous 
definitions. Define 

G === {(P, ~a) I P is a point of M, and ~a is a 
nonzero null vector at P}. 

G is a 7-manifold. Each point of G determines a curve 
in M: the directed null geodesic with tangent vector 
~a at the point P. Define, for each open set 0 of M, 

S(O) === interior {(P, ~a) E G I the null geodesic 
associated with (P, ~a) enters and remains in O}, 

where the interior is taken in the manifold topology of 
G. The S(O), where 0 ranges over all open sets of M, 
form a basis f.or the open sets of a new topology on 
G. We define equivalence classes in G: (P, ~a) ~ 
(P', ~'a) if every open set (in the new topology on G) 
containing (P, ~a) contains also (P', ~'a), and every 
open sete<m.taining (r, ~'a) contains also (p, ~a). The 
collection of equivalence classes, denoted by G, has a 
topology induced on it from the topology we have 
defined on G. The definitions of n, of its topology, 
and of the djjferentiable structure of G are the same as 
iu.Secs.. 11 and III. 

The following properties follow immediately from 
the asymptotic simplicity of M: 

L Two null geodesics in M are in the same equiv­
alence class if and only if they have the same endpoint 
on J. We have, therefore, a one-to-one onto mapping 
A:iJ--J. 

2. A: a -- J is a homeomorphism. 
3. a bas a differentiable structure. With this struc­

ture, A:o -- J is a diffeomorphism. 
4. A may be extended to a homeomorphism 

A:M--M'. 
We next use the conformal structure of M to define 

a conformal structure on G. We require the trans­
formation properties of Jacobi fields under conformal 
transformations. Let yeA) be a null geodesic in a 
space-time M, where A is an affine parameter. Define 
the tangent vector to this geodesic, ~ == dy().)JdA. Let 
if be a Jacobi field on y which connects y to a second, 
nearby, null geodesic. Consider now the conformally 

transformed metric, g~P = 02gap. Write the Jacobi 
field connecting the same two null geodesics (but now 
with the metric g~p) in the form 

fJ,a = fJa + f)~a. (1) 

Imposing the Jacobi equation on fJ'" (using the metric 
g;p), we obtain an expression for f): 

f) = - ~ I).(fJ"G"O) dA 

As before, we define a vector function ij"(A) by 
parallel transporting the Jacobi field fJ", evaluated at 
yeA), along y to some fixed point P on y. 

Let (P, ~a) be a point of G. Let Tpsa be the tangent 
space to G at (P, ~a), and let y be the null geodesic in 
M determined by (P, ~"). Define the following sub­
space of T psa: 

T ps" === {fJP E Tps" I rNa = o}. 

We see from Eq. (1) that the subspace T;'s" is a con­
formal invariant of M. T;'s" is a 6-dimensional vector 
space. In M', let the end point of y be e E J. Since J is 
null, the normal vector k to J at e lies in J. Since J is a 
regular surface in M', we see that no representation of 
k is contained in T;'sa. However, if h is any other 
vector tangent to J at e, then there exists a point 
(P, ~a) of G such that (i) the null geodesic associated 
with (P, ~,,) has endpoint e, and (ii) a representation 
of h is contained in T;'s'" These statements about M' 
are conformally invariant, and must therefore hold 
also in M. We have established the following: If M 
is asymptotically simple, and if e E G, then there is 
precisely one direction k in 0 at e having the property 
that for each point (P, ~a) in the equivalence class 
e, no representation of k is contained in T;'SII. 

Let (P, ~a) be an element of G whose null geodesic 
is in the equivalence class e. Since T;'S" is 6-dimensional, 
and since no representation of k is in T;'SIl' every 
vector 'I}" in T;'s" can be written in the form 

fJa = fJ~l) + 1]~2) , 
where 'I}(l) is in T;'SIl, and 1](2) is a representation of k. 
There must existS2 a functionf().) such that 

lim g .. piirl)(A)ijfl)(A)J[f(A)]2 (2) 
).-+00 

exists for all TJ" and is nonzero for at least one 1]". 

Define the norm of TJ" by the limit (2). The norm of any 
vector in G at e is given by the norm of one of its 
representations.s3 We thus define a metric on 0 at e, 

.. This statement is conform ally invariant because of Eq. (I) and 
the definition of Tps'" Therefore, since the statement is true of M' 
(with [().) = const), it is true of M. 

3' The norm thus defined is independent of the representation 
chosen, as one may verify in a neighborhood of ~(e) in M'. 
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this metric determined only up to a factor because of 
the freedom to multiply f().) by an arbitrary constant 
factor. From Eq. (1), we see that a conformal trans­
formation on M induces no more than a conformal 
transformation of the metric we have defined at the 
point e of O. Therefore, the null geodesic y().), ending 
at the point e of 0, determines a unique conformal 
metric at e. In M', we see that this metric is precisely 
the induced conformal metric on J, independently of 
the geodesic y().) chosen. Therefore, the conformal 
metric defined on 0 is independent of the geodesic 
y().). 

We must finally define a differentiable structure on 
M. Let y be any null geodesic in M with end point 
e EO. Let 'fJa be a Jacobi field on y such that the limit 
(2) is nonzero. Define the following function on y: 

w == ga/l'fJ(l)(A)'fJfl)().)' 

The function w is not a conformal invariant. The 
transformation g~/I = Q2ga/l induces the transforma­
tion w' = Q2w. There will exist a point on y beyond 
which w is strictly positive.34 We may therefore 
conformally transform M so that w = 1 beyond some 
point on y. Let t be any affine parameter on y (in this 
conformally transformed metric on M) which is zero 
on 0 and positive elsewhere on y. We shall call t a 
preferred parameter on y. A preferred parameter is not 
in general defined along an entire null geodesic, but 
only beyond a certain point on that geodesic. 

Let F denote the collection of all functions f on M 
such that 

1. f is a continuous function on M. 
2. f, restricted to M, is differentiable. 
3. f, restricted to 0, is differentiable. 
4. For each null geodesic yet) with preferred param­

eter t, f[y(t)] is a differentiable function of t for 
t ~ O. 

Since a functionf on M' is differentiable if and only 
if it is in the collection F, the functions F define a 
differentiable structure on M. 

This completes the construction. We have shown 
how, given any asymptotically simple space-time M, 
M' may be constructed. We may now reverse the 
argument. Define a space-time M to be asymptotically 
simple if our construction succeeds at every step (i.e., 
if Ai is a topological manifold, if the functions F 
define a differentiable structure on Ai, etc.) and if the 
conformal factor Q which relates the metric of M to 
that of Ai has the properties Q = 0 and oaQ :¢ 0 on 
O. Thus, we may express the asymptotic simplicity of 

S' In M'. TJa is a nonzero spacelike vector at A(e). Therefore. 
w > 0 at A(e). It follows that w > 0 on some interval of y about 
A(e). 

M in terms of only the intrinsic properties of the space­
timeM. 

V. EXAMPLES AND CONCLUSION 

It is necessary to have a certain amount of detailed 
information about the geodesics in a space-time in 
order to construct its g boundary. Unfortunately, in 
many of the exact solutions of Einstein's equations, 
the geodesic equations are too complicated to permit 
the derivation, in any simple way, of the structure 
of the g boundary. This problem represents one of the 
most significant disadvantages of our method for 
practical use. There are, however, a number of space­
times with sufficient Killing vectors so that the geo­
desics can be obtained up to quadratures. The results 
of g boundary analyses of several of these solutions 
follow. 

1. Schwarzschild solution. We take the metric in the 
form 

ds2 = - [1 - (2m/r)] dt2 + [1 - (2m/r)]-1 dr2 

+ r2(d(J2 + sin2 (J dq;2) 

for 0 < r < 2m. An extension beyond r = 2m re­
quires a change of coordinates.26 The g boundary 
consists of two disjoint cylinders, each topologically 
S2 x R (one cylinder for each of the two "r = 0" 
singularities). The space-time with g boundary M may 
be obtained by allowing the coordinate r to assume 
the value zero. (J, q;, and t are continuous coordinates 
on O. Thus, the g boundary is three-dimensional, not 
one-dimensionaP5 (Figs. 7 and 8). 

The g boundary may be given a differentiable 
structure. It turns out that the coordinates t, (J, and 
q; are differentiable coordinates on 0 (aside from the 
usual inadequacy of spherical coordinates at q; = O~ 

q; = 27T, (J = 0, and (J = 7T). The g boundary has a 
metric structure (see Sec. III). The metric may be 
written in the shorthand form 

ds2 = 00 dt 2 + 0(d(J2 + sin2 (J dq;2). 

It is meaningful, in particular, to say that collapse 
takes place in the directions tangent to the 2-spheres, 
while infinite expansion occurs in the t direction. 

The g boundary is spacelike. 

35 The 3-dimensional character of 0 is not so unreasonable as it 
might appear at first sight. Consider Minkowski space with the 
t axis removed. Let y be a geodesic which intersects the t axis at the 
origin O. On slightly varying the initial conditions of y. we obtain a 
family of geodesics which trace out a thickening of y containing an 
open neighborhood of the point O. This neighborhood completely 
surrounds the t axis in the vicinity of 0 (Fig. 7). On the other hand. 
let y be a geodesic in the Schwarzschild solution. and let (J. <p. 0) be 
the limiting values of these three coordinates on y as r -+ O. If we 
slightly vary the initial conditions of y. we obtain a family of geodesics 
which strike the singularity r = 0 in a small neighborhood of 
(J. <p. 0) (Fig. 8). If the Schwarzschild singularity were to be described 
as I-dimensional. we would expect all values of (J and lP to be 
represented in this neighborhood. 
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FIG. 7. The I-dimensional character of the t· 

axis in Minkowski 3-space. 

In this case (and in all but one of the examples we 
shall discuss), the metric structure of the g boundary 
turns out to be exactly what one would have expected 
by looking at the metric components in the familiar 
coordinate system. It should be emphasized, however, 
that the results quoted here are not based on guess­
work, but on application of the definitions given in 
Secs. II and III. 

2. The Reissner-Nordstrom solution. Write the 
metric in the form38 

ds2 = - 1 - - + - dt2 + 1 - - + - dr2 
(

2m q2) (2m q2)-1 
r r2 r r2 

+ r2(d02 + sin2 0 del) 

in the region 0 < r < m - (m2 - q2)1 (we assume 
m > q). Again, the g boundary consists of two dis­
joint cylinders, each topologically S2 x R (compare, 
Hawking37). The space-time with g boundary M is 
obtained by allowing the r coordinate to assume the 
value zero. The g boundary becomes, therefore, the 
surface r = 0, described by the differentiable coordi­
nates t, 0, and cpo 

The metric on the g boundary is 

ds2 = - 00 dt2 + O(d02 + sin2 0 dcp2) 

The g boundary of the Reissner-Nordstrom solution 
is timelike. 

There is one feature of the Reissner-Nordstrom 
solution which distinguishes it from the others. 
Whereas G [ is eight-dimensional for all the other 
space-times discussed here, G[ is only six-dimensional 
for the Reissner-Nordstrom solution. That is, only 
under very special circumstances does a geodesic 

.. J. C. Graves and D. R. Brill, Phys. Rev. 110. I S07 (1960). 
'7 Reference 2, p. 163. 
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FIG. 8. The three-dimensional character of the Schwarzschild 
singularity. One angular variable has been suppressed. 

strike the Reissner-Nordstrom singularity. (In fact, 
no timelike geodesics, and no spacelike or null 
geodesics with any motion around the (0, cp) 2-spheres, 
reach r = 0.) 

3. Closed Friedmann and Tolman universes. Take the 
metric in the form 

where 

R = a{l - cos 'YJ), t = a('YJ - sin 'YJ) 

for the Friedmann universe,3s and 

R = a sin 'YJ, t = a('YJ - sin 'YJ) 

for the Tolman universe.39 The two singularities in 
each solution occur when R(tJ = O. Each singularity is 
diffeomorphic to the 3-sphere, with X' 0, and cp 
differentiable coordinates. The metric on the g 
boundary is zero. The g boundary is spacelike. 

4. The spatially homogeneous, anisotropic, dust-filled 
solutions of Kantowski and Sachs. 40 Here we find an 
example in which the g boundary would be incorrectly 
predicted by a quick glance at the metric in the given 
coordinate system. Write the metric in the form 

The functions X(t) and Y(t) are given in parametric 
form 

x = 1 + ('YJ + b) tan 'YJ 
2 t = a(1/ + ! sin 21/), 

Y = a cos 'YJ 

where a > 0 and -!7T ~ b < 0 are constants. 
Three different types of singularities can occur in 

18 See, for example, L. D. Landau and E. M. Lifshitz, The Classical 
Theory of Fields (Addison-Wesley Pub!. Co., Reading, Mass., 
1962), p. 380 . 

• 8 R. C. Tolman, Phys. Rev. 37,1639 (1931) . 
6. R. Kantowski and R. K. Sachs, J. Math. Phys. 7, 443 (1966). 
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FIG. 9. The structure of the singularity of a spatially homogeneous, 
anisotropic cosmological model of Kantowski-Sachs. 

these solutions, but we restrict consideration to one of 
particular interest. Set b = I - (!)7T. We restrict 'YJ 

to the range (!7T, i7T). The two singularities occur at 
'YJ =!7T (where X = 0) and at 'YJ = i7T (where 
Y = 0). We consider the singularity at 'Y) = !7T, at 
which point t = a(!7T - i). 

The g boundary is topologically the cylinder, 
S2 x R, but we cannot use the coordinates r, e, cp as 
continuous coordinates on o. A schematic diagram 
of the (r, t) coordinates is shown in Fig. 9. Each point 
of Fig. 9 represents a 2-sphere. We see that in the 
Kantowski-Sachs coordinates, all of the lines r = 
const approach the same point on the g boundary 
(compare Fig. I). However, if we replace the coordi­
nate r by the new coordinate 

f == r[ln (t - a(!7T - i))]-1, 

then the g boundary is properly characterized by the 
continuous coordinates f, e, cpo The lines f = const 
are shown in Fig. 9. 

The g boundary is spacelike. The metric on the 
g boundary is given by 

ds2 = 0 df2 + ta2(de2 + sin2 e dcp2). 

Note that the metric on a has signature (0, +, +). 
Thus, it appears possible that 0 is a regular null 
surface, and that the space-time may be extended 
through o. However, the density of dust, a scalar 
invariant of the metric, becomes infinite as 'YJ -+ !7T, 
and so no extension is possible. 

5. Kasner metrics.41 These solutions are of interest 
because they were used by Lifshitz and Khalatnikov42 

U E. Kasner, Am. J. Math. 43, 217 (1921). 
U E. M. Lifshitz and I. M. Khalatnikov, Advan. Phys. 11, 185, 

(1963). 

as the prototype of the general singular solution of 
Einstein's (source-free) equations.43 

Write the metric in the form 

ds2 = -dt2 + t2P1 dx2 + t2P2 dy2 + t2Pa dz2. 

The Pi are given by 

PI = -sl(l + s + S2), 

P2 = s(I + s)/(1 + s + S2), 

fa = (1 + s)/(1 + s + S2), 

where s is an arbitrary real number in the interval 
o < s < 1. The Kasner metrics are a I-parameter 
family of source-free solutions. 

The g boundary of the Kasner solution has a to­
pology and differentiable structure given by the coordi­
nates x, y, and z at t = O. The metric on 0 may be 
written 

ds2 = 00 dx2 + 0 df + 0 dz2. 

The g boundary is spacelike. 
6. Taub space.44 In this space-time, there is a 

sufficient number of Killing vectors45 to calculate the 
geodesics. From the information that there are two 
possible extensions of Taub into NUT space,46 one 
can deduce immediately that the g boundary in­
cludes two disjoint, null 3-spheres. It is necessary 
to investigate only the equivalence classes of geodesics 
which are incomplete in both extensions of Taub 
space. 

A 2-geometry has been given by Misner46 which is 
not the solution of any particular field equations, but 
which displays several interesting features. Write the 
metric in the form 

ds2 = -cos t dt2 + 2 sin t de dt + cos t de2, 

where e is an angular coordinate, 0 ~ e < 27T [Fig. 
10(a)]. Let M denote the lower half (t < i7T) of the 
cylinder in Fig. tOea). There is a second extension of 
the space M. This may be seen intuitively as follows. 
Fix the bottom of the cylinder in Fig. 10(b), and 
rotate the top of the cylinder clockwise until the light 
cones are facing the other way, as in Fig. 1O(c). Now 
extend the space M as shown in Fig. 1O(d). The 
geodesic YI in Fig. 10(a) passes from M into the ex­
tension of M. However, we see that, in Fig. tOed), YI 

.a It is perhaps not widely known that the Kasner metrics repre­
sent a very specialized class of solutions. Consider the general static, 
cylindrical\y symmetric solution of Einstein's equations. That is, we 
consider metrics which are both (I) a special case of the Weyl-Levi­
Civita static, axially symmetric solutions and (2) a special case of the 
Einstein-Rosen cylindrical wave solutions, By writing such a metric 
in cylindrical coordinates and performing a complex coordinate 
transformation, we recover the general Kasner metric . 

•• A. H. Taub, Ann, Math. 53, 472 (1951). 
•• E. T. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 

915 (1963) . 
•• C. W. Mismer, J. Math. Phys. 4, 924 (1963). 
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FIG. 10. The g boundary analysis of a 2-geometry which has two 
inequivalent extensions. Typical light cones are shown. 

has become wrapped around the cylinder, asymptot­
icaIIy approaching the circle t = 177. The geodesic 
Ys wraps around the cylinder in Fig. lO(a), but has 
been "unwound" in Fig. IO(c), and so Y2 may be 
extended in Fig. lO(d). From the standpoint of the 
space-time M, the two geodesics Yl and Y2 are on equal 
footing. Without specifying one of the two extensions 
it is not possible to say which geodesic is "spiraling" 
around M, and which is not. M displays many of the 
properties of Taub space, with the two extensions 
playing the role of the two extensions of Taub into 
NUT space. 

The g boundary of M may be described as the 
union of three sets: two circles, C and C', and one 
abstract point IX. A point on the circle Cis the'equiv­
alence class of all those geodesics which, in Fig. lO(b), 
strike the circle t = t77 at one fixed point. Thus C 
represents the regular boundary t = 177 in Fig. IO(b). 
The circle C' represents the regular boundary t = 177 
in Fig. IO(c). The abstract point IX is the equivalence 
class consisting of all geodesics which spiral around the 
cylinder in both extensions.47 

47 It is not difficult to see that such geodesics must exist. In Fig. 
100a), draw the collection of all timelike geodesics from some fixed 
point on the circle t = O. Some, such as Yl' will pass through the 
circle t = f1T while others, such as Y., will spiral around the cylinder 
on approaching t = f1T. If we continuously change our geodesic 
from Yl to Y., we must find one geodesic which is on the boundary 
between the two classes. It follows from continuity arguments that 
this geodesic must spiral around the cylinder in both Fig. 100a) and 
10(d). 

The topology of a is as follows: The open sets 
consist of the ordinary open sets of the circle C and 
the ordinary open sets of the circle C'. However, 
every open set containing the point IX contains the 
whole g boundary a. In this case, the g boundary is a 
To topological space. 

If we attach just the one circle C to M, a differ­
entiable and metric structure can be placed on C, and 
we find the extension of Fig. lO(a). Similarly, if we 
attach the circle C', the extension of Fig. lO(d) is 
indicated. The following idea was suggested by Brill: 
"Why must we carry out only one or the other 
extension? Why not extend M in both ways simulta­
neously?" The space which results was pointed out by 
Penrose (see Fig. 11). Cylinders A and D are copies 
of Fig. lO(b). Cylinders Band C are copies of the 
upper half of the cylinder in Fig. lO(a). Geodesic Yl 
in Fig. 11 does not spiral around cylinder A, and so 
passes into cylinder B. Yl then turns around in B but, 
on approaching the boundary t = 177 of B, Yl spirals 
around cylinder B. This is the signal that Yl must be 
continued into cylinder D. Geodesic Y2 spirals 
around cylinder A, and is therefore extended into 
cylinder C. On turning around in C, Y2 continues into 
cylinder D. Note that the observers on the geodesics 
Yl and Y2 do not detect any anomalous effects on 
crossing the boundaries from one cylinder to another. 
An observer on Yl' for example, does not concern 
himself with cylinder C, for he never enters that 
region. In his local neighborhood, the geometry is 
differentiable and of the proper signature at all times. 

U nfortunate1y, there is a bit of difficulty with regard 
to the geodesics in the equivalence class IX. How shall 
these be extended? If Ya E IX, one would like to con­
tinue Y3 directly into cylinder D without entering 

FIG. II. Penrose's extension of the 2-geometry in Fig. 10(b). 
Each of the four cylinders is either the upper or the lower half of 
the cylinder in Fig. 10(a). 
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either of the cylinders B or C. However, there is a 
I-parameter family of geodesics in D which strike 
IX, and we have no way of choosing which one will 
become the extension of Y3' Of course, we could 
invent a consistent assignment of how each such 
geodesic is extended into D, but such an assignment 
would involve an arbitrary choice, thus destroying the 
unique character of the construction. Furthermore, 
it would not be possible to make the 2-geometry 
regular in a neighborhood of IX. We therefore drop the 
point IX and accept the consequence that our 2-
geometry is incomplete. 

Figure 11 represents a non-Hausdorff manifold. 
Despite this fact, there is no difficulty in writing a 
metric, in writing Einstein's equations or Maxwell's 
equations; that is, in doing all the physics to which 
one is accustomed. The book of Hicks' deals in large 
part with the differential geometry of non-Hausdorff 
manifolds. 

We have seen that the natural extension of the 
space-time M above is a non-Hausdorff manifold. But 
how are we to know in general whether or not a given 
space-time should be extended so as to be Hausdorff? 
The g boundary takes care of that. If the g bound­
ary of a space-time consists of several disjoint parts, 
and if each of these parts, when individually attached 
to the space-time, allows an extension, then we are 
free to carry out all of the extensions simultaneously. 
The resulting space-time mayor may not be Hausdorff. 
(In fact, the extension is Hausdorff if and only if the 
space-time with g boundary is Hausdorff.) The 
concept of a non-Hausdorff space-time has not been 
arbitrarily introduced, but enters here in a natural 
way. 

One is tempted at this point to discard the usual 
requirement that space-times be Hausdorff. However, 
this step may be too drastic, as the following example 
(based on a suggestion of Svetlichney) shows. Let A 
and B each represent the open interval (0, 1). Let C 
denote the collection of all pairs {x, y}, of rational 
real numbers with 0 < x < 1,0 < y < 1. Define: 

M=A UBUC, 

the disjoint unions. Consider the following basis for 
the open sets on M: 

1. The ordinary open sets of A. 
2. The ordinary open sets of B. 
3. A point {x, y} of C, along with open sets (x, x') 

(with x < x' < 1) of A and (y, y') (with Y < y' < 1) 
of B. M is a non-Hausdorff I-manifold. Every 
neighborhood of the point {x, y} of C intersects both 

(a) every neighborhood of the point x of A, and (b) 
every neighborhood of the point y of B. A continuous 
curve drawn in the direction of decreasing x along the 
line A may, at any rational point, jump continuously 
to any rational point of B. A continuous curve drawn 
in the direction of increasing x in A may not jump 
continuously to the line B. 

This example is too pathological to be of physical 
interest. It would seem that some restriction must be 
imposed on those non-Hausdorff manifolds which are 
to be deemed acceptable candidates for a space-time 
manifold. Two possible restrictions immediately come 
to mind: 

1. Only those non-Hausdorff space-times aJ;'e per­
mitted in which every geodesic has a unique extension. 

2. Only those non-Hausdorff space-times are per­
mitted in which every curve has no more than one 
end point. 

It seems, however, that many more examples will be 
needed before one will be able to formulate the proper 
criteria for admitting non-Hausdorff cosmological 
models. 

We have described a construction by which one may 
define and describe the "singular points" associated 
with any geodesically incomplete space-time. In view 
of the fact48 that singularities occur as a characteristic 
feature of solutions of Einstein's equations, a descrip­
tion of the singularities would be a useful tool in 
understanding how to deal with them. The approach 
outlined here suffers from two significant disadvan­
tages: 

1. The construction is difficult to carry out in 
practice for some space-times. 

2. Because of the freedom available in the formu­
lation of many of the definitions, the construction is 
less natural than one would like. 
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Let N = 0,2,··· ,n). For each subset A of N, let JA ~ O. For each iE N, let a, ± 1. For each 
subset A of N, define aA = II'E..! a i • Let the Hamiltonian be - LACNJAaA. Then for each A, BeN, 
(aA) ~ 0 and (aAaB) - (aA)(aB) ~ O. This weakens the hypothesis and widens the conclusion ofa result 
due to Griffiths. 

INTRODUCTION 

The inequality of Griffiths, which exhibits the 
monotonic behavior of the moments ("co~relations") 
in a ferromagnetic Ising system as functions of the 
interactions, has consequences which are sufficiently 
interesting to warrant further study of the inequality. 
(For example, the appearance of long-range order 
in the three-dimensional Ising ferromagnet follows 
immediately.) In particular, one would like to know 
what makes the inequality work mathematically. 

In this paper we generalize the result and give 
alternate proofs. An interesting problem is to obtain 
conditions on the moments of a distribution of a 
system of Ising spins which are necessary and suffi­
cient for the distribution to have come from a ferro­
magnetic Hamiltonian. This problem is not solved 
here. In fact, a list of unsolved problems appears in 
the Appendix. 

1. ISING MODEL WITH LONG-RANGE 
INTERACTION 

Let N denote the index set { 1, 2, . . . , n}; consider 
the space of aJl2n spin configurations (aI' a2, ••• , an), 
where each ai is allowed the values + 1 ("up") or -1 
("down"). We customarily denote a general configura­
tion by y, and (a;)y is the number (± 1) which appears 
as the ith spin (component) in y. 

Suppose that for each pair (i,j) of distinct indices 
in N the extended real number 

Jii = Jii ~ 0 (1.1) 

is given (Jii = 00 is permitted). The requirement 
J i ; ~ 0 is that the system be ferromagnetic. The 
Hamiltonian of the system is a real-valued function 
on configurations, whose value at the configuration 
y is 

• Partially supported by NSF GP 3941 and NSF GP 7469. 
t Present address: Jet Propulsion Laboratory 238-420, 4800 Oak 

Grove Drive, Pasadena, California 91103. 

also employ such abbreviations as (O'i + O';)y for 
(0' ;)y + (0';)1" etc.] 

The Gibbs probability on the space of configurations 
is defined by 

P(y) = Z-1 exp (-{3Jq, (1.3) 
where 

{3 = (kT)-1 > 0, (1.4) 

k being Boltzmann's constant and T the (absolute) 
temperature, and where the partition function Z is 
defined by 

(1.5) 

The expected value of a random variable X on this 
probability space is called its thermal average and is 
denoted by angular brackets: 

(X) = E(X) = ~ X(y) exp (- (3Jey) [ ~ exp (- (3Jey) ri

. 

(1.6) 

As an example, we note that if ai denotes the 
random variable whose value at y is (O'i)" , then 

(O'i) = O. (1.7) 

This is true because Je y = Je_ y (where -y denotes the 
configuration obtained from y by multiplying every 
spin by -1); hence P(y) = P( -y), whereas (at)y = 
-(O'i>-y' 

In fact, for the same reason, 

(1.8) 

whenever A contains an odd number of indices. 
Griffithsl proved the following sets of inequalities: 

(aka!) ~ 0 for all k, 1 E N. (1.9) 

(akO'!amO'n) - (O'kO'!)(O'mO'n) ~ 0 
for all k, I, m, n EN. (1.10) 

(Note that k, I, m, and n need not be distinct.) 
In view of the fact that (ak ) = 0 and var (ak ) = I 

for all k, Eq. (1.9) says that the covariance of any pair 

1 R. B. Griffiths, J. Math. Phys. 8,478 (1967). 
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CORRELATIONS IN ISING FERROMAGNETS 467 

of spins is nonnegative; that is, the probability that 
they have the same sign is at least 1. 

On account of the identity 

1 O«(Jk(JZ) , 
- -0-- = «(Jk(Jz(Jm(Jn) - «(Jk(JZ),(Jm(Jn) (1.11) 
(J J mn 

(which may be verified by substituting (1.2) into (1.6) 
and differentiating), Eq. (LlO) says that increasing 
anyone of the interaction strengths J mn can never 
decrease the covariance of an arbitrary pair of spins. 
The physical consequences of this are rather far­
reaching; (1.l0) may be used, for example, for a 
simple proof of the existence of a phase transition in 
the three-dimensional Ising model (see Ref. 1). 

We remark that the hypothesis J ii ~ 0 is essential; 
both (1.9) and (LlO) fail without this assumption 
(see Sec. 6 ). 

We shall refer to (1.9) and (LlO) as the Griffiths 
inequalities. 

Classical Cases 

In what we shall call the classical Ising model of a 
ferromagnet, the spins are considered to be situated 
at the vertices of a one-, two-, or three-dimensional 
square (or cubic) lattice, and the interactions are 
given by 

J .. = nearest neighbors on (1.12) 

{

J ~ 0 if spins i and j are 

" the lattice, 

o otherwise. 

This model has been studied extensively (see Newell 
and Montroll,2 Onsager,3 Griffiths,4 and their bibliog­
raphies). 

A generalization of the classical Ising model which 
includes the long-range model is the model of a 
magnet in an external magnetic field, in which the 
Hamiltonian is given by 

n 

Je~xt = Z. Ji ;( (Ji(J ;)y - H Z. «(Ji)y, (1.13) 
;<j i=1 

where H ~ 0 is the external field strength. 
The Griffiths inequalities hold for this model also; 

they are proved in Griffiths.6 They will appear also as a 
consequence of the extension in the next section. 

2. GENERALIZATIONS; MAIN THEOREM 

One extension of Griffiths' inequalities is as follows. 
For each subset A of the index set N, define 

rr4- = II (Ji (atl> == 1). (2.1) 
;eA 

2 G. Newell and E. W. Montroll, Rev. Mod. Phys.15, 353 (1953). 
8 L. Onsager. Phys. Rev. 65,117 (1944). 
• R. B. Griffiths. Phys. Rev. 136, A437 (1964). 
• R. B. Griffiths. J. Math. Phys. 8,484 (1967). 

Then under the same hypothesis as in Sec. I, viz. 
(Ll), we have 

«(JR) ~ 0 for all R c: N, (2.2) 

«(JRaB) - (aR)<aB) ~ 0 for all R, S c: N. (2.3) 

We shall not prove these now, as they are included in 
the main theorem below. 

As an example of (2.3), let R = {k, I, m, n} and 
S = {k, I}. We then have 

«(Jm(Jn) - «(Jkaz(Jm(Jn)«(Jk(JZ) ~ O. (2.4) 

Here we have upper bounds on the fourth-order 
moments of the spins in terms of ratios of second­
order moments. In contrast to this, (1.10) gives 
lower bounds on the fourth-order moments in terms 
of products of second-order moments. 

We note in passing that 

(2.5) 

where R6.S denotes the set-theoretic symmetric 
difference: 

R6.S = (R U S) - (R n S). (2.6) 

An interpretation of (2.2) is similar to that for (1.9): 
The probability that a given set of spins contains an 
even number of "down" spins is at least t. However, 
no identity such as (1.1 1) exists (at this level of 
generality) to relate (2.2) and (2.3). 

Main Theorem 

We now extend the probability on the space of 
spin configurations. For each nonempty subset A of 
N, let the number 

JA > 0 (Jt/> = 0) (2.7) 

be given, and define the Hamiltonian by 

(2.8) 

Probabilities are again defined by (1.3), (1.4), and 
(1.5), with (2.8) replacing (1.2) for Jey. [Since the 
only distinction between (1.2) and (2.8) is one of 
specialization, we use the same symbol for both.] 

Theorem: In the probability space defined by (2.7), 
(2.8), (1.3), (1.4), and (1.5), we have 

(I) <(JR) ~ 0 for all R c: N, 

(II) <(JRaB) - <aR)(aB) ~ 0 for all R, S c: N~ 

With our new Hamiltonian we again have 

! O«(JR) = «(JR~) _ <(JR)(~). 
(J oJs 

(2.9) 
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Hence II admits an interpretation like that of (1.10): 
The tendency of each set of spins to contain an even 
number of "down" spins is increased when any of the 
interaction constants Js is increased. 

The next three sections are devoted to the proofs 
of I and II, which we shall call the generalized Griffiths' 
inequalities. 

3. NOTATION AND CONVENTIONS 

Before embarking on the proofs, we introduce 
certain notational conveniences. 

Observe first the effect of adding a constant C to the 
Hamiltonian: The partition function Z is multiplied 
by exp (-~C), but so is the numerator of (1.3), so 
that no probabilities, and hence no thermal averages, 
are changed. Hence, if we can prove I and II with a 
constant added to Jey ' we shall have proved our 
theorem. 

We in fact add the constant C =!A. c N J A. to Je, 
using 

instead of (2.8). In place of (l.5) we then have 

Z* = L exp (-~Je~). (3.2) 

In place of (1.6) we have 

<X) = ~ X(y) exp( -~Je~)[ ~ exp (-~Je~)rl. (3.3) 

Now 

so that 

{ 
2 if aA. = -1, 

aA -1 = -0 
if aA. = +1, 

Je* - 2 y - L JA.. 
A.cN 

(.,A)y=_1 

If, for each A c N, we let 

we then have 

exp (-~Je;) = IT xA. ~ O. 
A.cN 

(aA)y=_l 

Defining Zy =-exp (-~Je~), we get 

Z* = !Zy ~ 0, 

and 

Note that 0 5: JA. 5: 00 is equivalent to 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

o 5: XA. ~ 1 for all A c N. (3.9) 

The following "lemma" will be used only once, in 
the initial step of the inductive proof of I. We state it 

as a lemma to avoid annoying details in that proof, 
and to establish a notation for what follows. 

Lemma: If A and Bare nonempty, unequal subsets 
of N, then the two sets of configurations 

A+ = {y:aA. = +1}, A- = {y;aA. = -1} 

each contain 2n
- 1 configurations; and the four sets 

A+B+ = {y:aA. = +1, aB = +1}, 

(A+ B-, A-B+, A-B- defined analogously) each contain 
2n

- 2 configurations. 

Proof· Choose an index in A, say i. A one-to-one 
correspondence between A+ and A- is given by 
y ~ y', where y' is obtained from y by multiplying ai 

by -1 (and y is obtained from y' in the same way). 
Now suppose (without loss of generality) that B 

contains an index j not in A. Then we have a o'ne-to­
one correspondence between A+B+ and A+B-, and 
one between A - B+ and A-B-, both given by y ~ y", 
where y" is obtained from y by multiplying aj by -1. 

Since A+B+ and A+B- are subsets of A+, and A-s+ 
and A-B- are subsets of A-, each of the four has 
2n

- 2 configurations. End of proof of lemma. 

4. PROOF OF I 

Since Z* > 0, it suffices to prove that 

A(R) = Z*(aR) = L (aR)yZy ~ 0 for all R c N. 

(4.1) 

Lemma 1: In a system where (a R ) ~ 0 for all 
R eN, we have 

! (aR)yZy ~ 0 for all R, BeN. (4.2) 
y<B+ 

Proof: Notice that 

Hence, 

{
2aR 

aBa
R + aR = 0 

if aB = +1 

if aB = -1. 

1 ! (aR) Z = - L «(JB(JR + aR) Z 
yEB+ Y Y 2 Y Y 1 

Z* = _ [«(JB<1R) + «(JR)], 
2 

which is nonnegative by the hypothesis. End of proof 
of Lemma 1. 

Now we prove (4.1) by induction on the number of 
JA. that are nonzero in the Hamiltonian. 

Note that 
(4.3) 
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If all J A are equal to zero, then all x A are 1, and so 
Zy = 1 for every y. Hence, 

A(R) = 2 1 - 2 1 = 2n
-

1 
- 2n

-
1 = O. 

yeR+ yeR-

If JB > 0 and all other JA are 0, we have two cases: 
B = RandB~ R. 

If B = R, then 

Z ={XR<l if (aR)y=-l, 

y 1 if (aR)y = 1. 
So 

A(R) = 2 1 - 2 XR = 2n
-

1(l - XR) > o. 
yeR+ yeR-

If B ~ R, then 

Z = {XB < 1 if (aB)y = -1, 

y 1 if (aB)y = 1. 
So 

A(R) = 2 1 + 2 XB - 2 1 - 2 XB 
YER+B+ yER+B- YER-B+ YER-B-

= 2n-2(1 + XB - 1 - XB) = o. 
So A(R) ~ 0 for all R when at most one of the JA is 
nonzero. 

Suppose A(R) ~ 0 for all R in every system in 
which k (~ 1) of the JA are nonzero; consider a 
system in which k + I of the J A, among them J B, 

are nonzero. 
Now A(R) is a polynomial in the variables xA 

which is an inhomogeneous linear function of each 
variable, and in particular, of XB • SO if we can prove 
A(R) ~ 0 for the end-point values XB = 0 and XB = 1 
(with fixed but arbitrary values of the other XA, only 
k of them being unequal to 1), the proof of I will be 
complete. 

(Here is where the hypothesis JA ~ 0 for all 
A c N is used; if JB < 0 is permitted, then XB > I, 
and this method of proof will fail.) 

When XB = 1, we have JB = 0, and we are back 
to the case in which only k of the J A are nonzero; 
the induction hypothesis gives A(R) ~ O. 

When XB = 0, we have 

{
o when (aB)y = -1 

Z = 
y Z; when (aB)y = 1, 

where Z~ does not involve XB' For this reason, Z~ 
can be considered to have come from a Hamiltonian 
in which JB = 0, i.e., XB = 1. We have 

A(R) = 2 (aR)yZ~ . 
yeB+ 

But by the induction hypothesis and Lemma 1, 
A(R) ~ 0 for all R in such a system (only k of the JA 

are nonzero). End of proof of I. 

We note in passing that the hypothesis of Lemma I 
is just I, which has now been proved; hence we have 
(4.2) for all ferromagnetic systems. In probabilistic 
terms, 

E(aR laB = +1) ~ 0 for all R, BeN. 

5. PROOF OF n 
First we derive two expressions for F, defined by 

F = (Z*)2 [(aRaB) _ (aR)(aS)]. (5.1) 
4 

(aRaS) _ (aR)(aS) = (Z*)-2(~ (aRaS)yZy) (~ZY) 

so that 

_ (Z*)-2 (~ (aR)yZy) (~ (as)y,Zy} 

F = ! L 2 [(aRaS)y - (aRMaB)y']zyZy" 
4 y y' 

For the second expression let 

Then we have 

and 

p = 2 Zy, 
yeR+S+ 

q = ~ _Zy, 
yeR S 

r = L Zy, 
yeR-S+ 

Z* = p + q + r + s 

Z*(aRaB) = p - q - r + s, 
so 

(5.2) 

(5.3) 

(Z*)2(aRaB) = (p + S)2 - (q + r)2. (5.4) 

Similarly, 

(Z*)2(aR)(aS) = (p _ S)2 _ (q _ r)2. (5.5) 

Combining (5.4) and (5.5) yields 

(Z*)2[(aRaS) - (aR)(aS)] = 4(ps - qr), 

whence we get 
F=ps - qr. (5.6) 

We next make some observations about the form 
of F. It is first of all a polynomial in the variables XA' 

in which each XA occurs in any term to power 0, I, 
or 2. (For this proof we assume that all the variables 
XA appear, that is, 0 < JA < 00 for all A c N, even 
including xq,. If F ~ 0 can be proved for such cases, 
it will follow by continuity of F for the cases in which 
some XA are I or 0.) 

Let us define the Griffiths' form of a polynomial, 
which is at most quadratic in each of its variables, as 
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follows. For each term, the linear part is the product 
of those variables appearing with exponent 1. (For 
example, the linear part of _2x 3yzw2 is yz; -3y2 

has no linear part.) 
Now label the distinct linear parts of all terms, say 

gt , g2, ... (some linear parts may serve for more than 
one term; there will be at most 2n different linear 
parts). Combine all terms having the same linear 
part gi' calling the sum giGi, where G; is called the 
nonlinear part. In addition, there may be terms 
without linear parts; combine them to form Go. 
The Griffiths' form is then 

Go + ~ giGi' 
i 

[For example, the Griffiths' form of 

X2 + WX2
y 2z - 2wxy2 + wy2z + WXZ2 + 3 wy2 

is 

where the G. are enclosed in parentheses.] 
Now when F is put into Griffiths' form, there will 

be no Go, for XRXS is a linear factor of every term. 
(Proof: XR appears in every term of rand s and in no 
term of p and q; Xs appears in every term of q and s 
and in no term of p and r.) We thus have 

(5.7) 

Since 0 < XA < 1 for all A c N, we have g. ~ 0 
for all i. Fix an index k ~ 1; to prove II it suffices to 
show Gk ~ O. 

This is done by proving the three following state­
ments: 

(1) There exists a nonempty subset Bk of N 
such that 

(i) XA appears in gk iff #(A n Bk) is odd. 
(ii) #(R n Bk) and #(S n Bk) are odd. 

(2) Consider the reduced system, obtained by 
setting all the XA appearing in gk equal to l. For this 
system the Griffiths' form of F becomes 

F(r) = G~ +! g;G;, (5.8) 
i 

and we have G~ = Gk • 

(3) In the reduced system, G~ ~ O. 

II will of course follow when these three statements are 
proved. 

Proof of Statement 1. First, (i) implies (ii), for XR and 
Xs appear in g. for every i ~ 1. 

On account of (5.6), each term in F is of the form 
±ZyZy' for some pair (y, y') of distinct configurations. 

So 

gkGk = ±ZYIZ 1& ± Z1.Z14 ± ... , (5.9) 

where the terms in the sum all have the same linear 
part gk' We fix our attention on Yt and Y2 only. 

Let 

Bk = {i: (ai)Yl :F (a.)y.} :F cp, (5.10) 

and for j = 1 or 2 let 

DJ = {i: (ai»)'1 = -I}, (5.11) 

which is the set of "down spins" in YJ: 
Now XA appears in Zy iff #(A n D j ) is odd (j = 

1,2), and XA appears in gk iff XA appears to power 1 
in ZYIZY2' i.e., iff one of #(A n Dt ), #(A n D 2) is 
odd and the other even, i.e., iff #(A n Dt ) + 
#(A n D2) is odd. 

But 

#(A n DI ) + #(A n D2) 

= #(A (') DI n Bk ) + #(A n D
t 

n ~) 

+ #(A n D2 n Bk ) + (A n D2 n B~). 
However, 

An D2 n Bk 

and 

= {i EA:(ai )Y2 = -1 and (a;)11:F (a')YI} 

= {i E A : (ai )11 = 1 and (a,) y1 :F (a')1I} 

= An Df n Bk , 

An D2 n B~ 

Hence, 

= {i E A: (ai )1I = -1 and (a')Yl = (a')Y2} 

= {i E A : (a')Yl = -1 and (a')11 = (ai)YI} 

= An Dl n B~. 

#(A n Dt) + #(A n D2) 

= #(A n Dl n Bk ) + 2#(A n Dl n B~) 

+ #(A n D~ n Bk ), 

which is odd iff #(A n Dl n Bk ) + #(A n D~ n Bk ) 

is odd. End of proof of Statement 1. 

Proof of Statement 2. It is clear that 

G~ = Gle + Gle1 + Glel + ... , 
where Gk1 , Gk • ' ••• are those G, whose associated gi 
contain only variables appearing also in gle' But we 
shall show that for any two distinct linear terms, 
each always contains a variable not appearing in the 
other; it will follow that there is no gi whose variables 
all appear in gk' so that Statement 2 will follow. 

In fact, each gi contains precisely half of the vari­
ables XA (including xq,). [Proof: XA appears in gi 
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iff #(A n B i ) is odd, where Bi is as in Statement 1. 
But the sets having an odd intersection with a fixed 
nonempty set comprise half of all sets, for a one-to­
one correspondence between these sets and the 
others is given by fixing an index j E Bi and associating 
a set C with CAU}.] 

But distinct sets having the same finite number of 
elements must each contain an element not in the 
other. End of proof of Statement 2. 

Proof of Statement 3. On account of Statement 1, 
we have, in the reduced system, 

Zy = IT [xA:#(A n Bk ) is even, (aA)y = -1]. 

(5.12) 

For each configuration y, let y* be the configuration 
obtained from y by multiplying (ai)y by - I for each 
i E Bk , and having all other (ai)y unaltered. 

Note that 

Z (r) = z(r) 
y* y , (5.13) 

where the superscript r indicates that we are in the 
reduced system, i.e., the variables in gk are being 
ignored. 

Z~'~) = II [x A: #(A n Bk) is even, (aA)y. = - I], 

while in this product 

(aA)y. = (aAnBk)y. (uA nBk\. 

= (aAnBk)y(aAnBk\, 

since #(A n Bk ) is even, and y and y* agree on 
A n B~. So 

and hence 

Also, 

(5.14) 

But a cross term is of the form z~r)Z~~J, where y 
and y' are distinct configurations with (aR)y = (aR)y' 
and (as)y = (as)y" (Note that ZyZy' does not appear 
in the original F; nevertheless, its reduction z~r)z~~) 
appears in F(r).) So the linear part of ZyZy' (before 
reduction) does not contain XR and Xs, and hence is 
not gk' Therefore, as in the proof of Statement I, it 
contains a variable not in gk' Hence z~r)z~~) has a 
linear part which remains after reduction. 

Clearly, however, the two sums in (5.16) do not 
contain any linear terms; hence the nonlinear part of 
F(r) is 

G~ = 1 (z~r»2 - 1 (Z~»2 
yeR+S+ yeR+S-

= 1 (aBMZ~»2. 
yER+ 

But this is precisely the left-hand side of (4.2), except 
that we are in a system where certain lA have been set 
to zero and the remainder ofthelA have been doubled 
(thUS causing each XA and Zy to be squared). Such a 
system is still ferromagnetic, so that (4.2) holds. 
End of proof of Statement 3; end of proof of II. 

We remark here the similarity in form between the 
above proofs and Griffiths' proofs. In both cases the 
proof of I is by induction on the number of non­
vanishing interactions, and the proof of II uses the 
Griffiths' form and shows that each Gk is the Go of a 
reduced system, which is always nonnegative. 

We conclude this section with a remark on the 
effect of increasing 1 s. As observed earlier, II and 
(2.9) imply that none of the moments (aR ) can de­
crease when ls is increased; moreover, one has a 
strong feeling that (as) should increase at a faster 
rate than any of the other (aR ). That this is so is 
confirmed by the following: 

Proposition: 

a(aB) _ a(a
R

) ~ 0 for all R, SeN, (5.17) 
als als 

for the transformation y ->- y* involves changing the or 
spins in Bk , and #(Bk n R) is odd. Similarly, Q = 1 - (aB)2 - (aRaB) + (aR)(aB) ~ O. (5.18) 

(5.15) 

Hence p = s in the reduced system, for if z(r) appears 
in p, then Z~~) = z~r) appears in s. Simila:ly, q = r. 
So in the reduced system, 

F(r) = p2 _ q2 = ( ~ + Z~»)2 - ( 1 _ Z~»)\ 
yER S yeR+S 

F(r) = ! (z~r»2 - 1 (z~r»2 + cross terms. 
yeR+S+ YER+S-

(5.16) 

Proof' 

(Z*)2Q = (Z*)2 - (z*(aB)l- Z*(Z*(aRaB» 

+ (Z*(aR»(Z*(aB». 

Withp, q, r, and s as in (5.3) we have 

Z* = P + q + r + s, 

Z*( aR) = p + q - r - s, 

Z*(aB) = p - q + r - s, 

Z*(aRaB) = p - q - r + s. 
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Hence 

(Z*)2Q = (p + q + r + S)2 - (p - q + r - S)2 

- (p + q + r + s)(P - q - r + s) 
+ (p + q - r - s)(P - q + r - s) 

= 4(P + r)(q + s) - (p + S)2 + (q + r)2 
+ (p - S)2 _ (q _ r)2 

= 4(pq + 2qr + rs), 
which is nonnegative because p, q, r, and s are 
nonnegative. 

End of proof of proposition. 

6. COUNTEREXAMPLE TO I AND II 
WHEN JA <0 

First we give a general form for counterexamples 
with N = {I, 2, 3}; this will shorten the descriptions 
of the several counterexamples that will follow in this 
and later sections. 

If A = {ilo' .. , ik }, we will denote JA by Ji1 •i2 ··· it 

and XA by Xi,.is '" it; for example, X{I.2} will be called 
X l2 , and X{l} will be Xl' So for N = {I, 2, 3} a system 
is completely specified by giving the values of the 
seven numbers. 

Xl, X2, X3, Xu, X13, X23, XU3 (X</> = 1 always). 

The configurations y and their relative probabilities 
Zy will then be displayed as in Table I. 

TABLE I. Configurations y and their relative 
probabilities Zy. 

0"1 O"a O"a Zy 

+1 +1 +1 
+1 +1 -1 x 18X23XaX 128 

+1 -1 +1 x laXaaX.x '2a 
+1 -1 -1 X"X13X2X a 

-1 +1 +1 X12X 13X I X 123 

-1 +1 -1 X12X2SX ,XS 

-1 -1 +1 X13XsaX ,X2 

-I -1 -1 XIXaXaX 12S 

Example 6.1: Here we allow some of the JA to be 
negative, and show that I and II fail. JA < 0 is equiv­
alent to xA > 1. 

Let Xl = X2 = Xa = X 123 = X13 = 1, 

x12 = X > 1, 

X23 = Y > 1. 
Z* = 2(1 + x)(1 + y), 

Z*(lha2) = 2(1 - x)(1 + y) < 0, 

Z*(a2a3) = 2(1 + x)(1 - y) < 0, 

Z*(ala3) = 2(1 - x)(l - y) > o. 

TABLE II. Relative probabilities 
for Example 6.1. 

0", O"a 

+1 +1 
+1 +1 
+1 -1 
+1 -1 
-1 +1 
-1 +1 
-1 -1 
-1 -1 

Now 

and 

(Z*)2 
-- [(0'1a2) - (a10'3)(0'2a3)] 

4 

O"s 

+1 
-1 
+1 
-1 
+1 
-1 
+1 
-1 

Zy 

1 
Y 
xy 

x 

x 

xy 

Y 
1 

= (1 - x)(l + y)(l + x)(l + y) 

- (1 - x)(l - y)(1 + x)(l - y) 

= (1 - x2)4y < O. 

Note that this counterexample serves for Griffiths' 
model also, since all interactions are binary. 

7. THIRD·ORDER INEQUALITIES 

In the system of Sec. 2 notice that 

(O'R) = ! a In Z 
{3 JaR' 

and so 

It is natural to consider 

1 03 In Z _ = (aRaB aT) _ (aR)(aSaT) 
(33 oj Raj soJ T 

(7.1) 

- (aB)(aRaT) - (aT)(aRaB) + 2(aR)(aB)(aT). (7.3) 

We give two examples to show that this may be 
either positive or negative. 

Example 7.1: R = S. The right-hand side of 
(7.3) is then 

_2(aR)(aRaT) + 2(aR)2(aT) 

= _2(aR)[(aRaT) _ (aR)(aT)]. 

By I and II, this is never positive; there arc easy 
examples in which the inequalities I and II are both 
strict, so that the right side of (7.3) may be negative. 
(Such an easy example is N = {I, 2, 3}; R = T = 
{I, 2}; J{l.2} = J > 0, JA = 0 for all other A eN.) 
End of Example 7.1. 
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Example 7.2: In the long-range model of Sec. 1, 
let R = {k}, S = {f}, T = {k, f}. Then the right-hand 
side of (7.3) is 

1 - (ak )2 - (a!? - (aka!? + 2(ak )(a!)(a/al ). 

But by (1.7), this is just 

1 - (ak,a/)2 ~ O. 

Again, this is strict in some cases; the same "easy 
example" given above is such a case (where k = 1, 
1 = 2). End of Example 7.2. 

Concavity of Magnetization 

The above questions are interesting partly because 
of the following considerations. 

Consider the external magnetic field model, given by 
(1.13) above. Define 

and 

M = (s), 
n 

(7.4) 

called the "average magnetization per spin." Since 
0:::;; (a i ) :::;; 1, we have 

o :::;; M :::;; 1. (7.5) 

Applying II and increasing the J(i} one at a time from 
H to H + k will show that M is an increasing function 
of H: 

M(H) :::;; M(H + k) for k ~ O. (7.6) 

Furthermore, (ai ) --+ 1 as H --+ 00. This is true 
because the numerator and denominator of (3.8) 
are jointly continuous in the xU), and tend to 1 as the 
xU} tend to zero. 

The open question is: Is M a concave function of 
H? One feels that the situation must be rather patho­
logical if this is not the case, but we know of no 
proof of concavity. 

Since M is a rational function of eH , the other 
variables J;; being fixed, concavity of M(H) is equiv­
alent to 

(7.7) 

Performing the differentiation as above, we find 
this to be equivalent to 

D = (S3) - 3(S)(S2) + 2(s)2 :::;; O. (7.8) 

Mere manipulation shows that 
n n n 

D = L L LDi1k' (7.9) 
i=l 1=1 k=l 

where 
Diik = (Cliaiak) - (Cli)(aiClk) - (ai)(CliClk) 

- (ak )(CliCl1) + 2(ai )(a1)(ak ). (7.10) 

So by (7.3), a sufficient condition for concavity of 
M(H) is that, in the general system (2.8), 

[ 
\ (J31

n Z ] < 0 for all H > 0 
{J oJ/JJiOJk Jt= .. '=In=H -

(7.11) 
(where we have abbreviated J{i) by J i ). 

Notice that Example 7.2 does not contradict this 
proposition, for in Example 7.2 the sets R, S, T 
are not distinct sets of one spin each, as they are in 
(7.11). However, the following example shows that 
(7.11) is not true in general when JA for other than 
one- and two-element sets are permitted. 

Example 7.3: N = {I, 2, 3}; Xl2 = Xu = X23 = 
,J;', Xl = x! = X3 = X 123 = ,Jp, x'" = 1. Table III 
shows configurations and their relative probabilities. 

Z* = 1 + 6rx{J + (J2, 

Z*(Cll ) = Z*(Cl2) = Z*(aa) = Z*(Cl1C1!CI!) = 1 - (J2, 

Z*(al a2) = Z*(al a3 ) = Z*(a2C13) = 1 - 2rx{J + (J2. 

Then 

which is positive when rx > t and negative when 
rx < t. End of Example 7.3. 

TABLE III. Relative probabilities 
for Example 7.3. 

111 11. 11, Zy 

+1 +1 +1 1 
+1 +1 -1 IY.f3 

+1 -1 +1 IY.f3 

+1 -1 -1 IY.f3 

-1 +1 +1 IY.f3 

-1 +1 -1 IY.f3 

-1 -I +1 IY.f3 

-1 -1 -I f3' 

However, the following question is still open, and 
an affirmative answer would provide a proof of the 
concavity of M(H): In the external magnetic-field 
system, is Diik ~ 0 for all triplets (i,j, k) of distinct 
indices? 

Notice that Diik ~ 0 whenever any two of i, j, k 
are equal, as seen in Example 7.1. 

A further consequence of the result in Example 
7.1, namely 

oaln Z < 0 
oj Raj Raj T - , 

is that the second partial derivative of any aT with 
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respect to any J R is nonpositive, for 

02(O'T) 031n Z 031n Z 
--= = 
oJ~ oj TOJ Raj R oj Raj Raj T 

[Compare this with the result of II and (2.9) that the 
first partial is nonnegative.] 

8. CONVERSE PROBLEM 

Given any system of n random variables Xl' ... , X n' 
each assuming values ± I , we can solve the 2n 

equations 

Z-l exp (-{JJe y) = Pr [(Xl"'" Xn) = Y] (8.1) 

for the 2n constants JA . The question is: Under what 
conditions are all JA ~ O? In other words, we"have in 
I and II a necessary condition for ferromagnetism; 
what is a sufficient condition? 

That I and II alone are not sufficient is shown by 
the following example: 

Example 8.1: Let n = 4, and consider random 
variables Xl, X2 , X 3 , X,. Let the probabilities of the 
configurations be as follows: 

P(++++) = Po 

P(+++-) = PI 

P(++-+) = P2 

P(++--) = P3 

P(+-++) = p, 

P(+-+-) = Pi 

P(+--+) = P6 

P(+---) =P7 

P(-+++) = Ps 
P(-++-) = Pe 
P(-+-+) = PlO 

P(-+--) = Pu 

P(--++) = P12 
P(--+-) = P13 
P{---+) = Pa 

P(----) = PIS' 

[Here (+ - + -), for example, is the event (Xl = + I, 
X2 = -1, X3 = +1, X, = -I).] 

If these probabilities come from a Hamiltonian as in 
(2.8), (1.3), and (1.5), then it can be seen that 

PIPZP,P7 PsPnP13P14 
X 1234 = , 

PoPaPsP6P9PlOP12P15 
where 

X
12

34 = e-2fJJ 1234. 

We show values of Po, ••• ,PIS such that X 1234 > 1, 
but such that I and II hold, thus contradicting the 
sufficiency of I and II for ferromagnetism. 

Let Po = Pis = (1 + a.')K-I, 

Pl = P2 = P, = P7 = Ps = Pu = P13 
= Pu = (a. + a.3)K-l, 

pa = Ps = P6 = P9 = PlO = P12 = {2a.2)K-l, 

where a. will be some small positive number and K is 
the proper norming constant to make 2.~5 Pi = I. 

Then we have 

(a. + a.3)s a.s + o(a.S) 
X

1
234 = (1 + a.')2(2a.2)6 = 26a.12 + O(a.12)' 

where o(a.K ) divided by a.K tends to 0 as a. tends to O. 

a.s + o(a.S) 
X1234 = 8 ---+ 00 as a. ---+ O. 

o(a. ) 

SO X1234 certainly exceeds I for some small positive 
value of a.. 

To show that the random variables Xl' X2 , X3 , 

and X, satisfy I and II, consider the following Ising 
model: 

N = {I, 2, 3, 4, 5}, 

X 15 = X25 = XS5 = X'S = a., 

xA = I unless A = {I, 5}. {2, 5}, {3, 5}, {4, 5}. 

This is in fact a Griffiths' model, so I and II are 
certainly satisfied. Hence I and II are satisfied for the 
system 0'1' 0'2' 0'3' a, only; for certainly if I and II 
hold for all R, S c {I, 2, 3,4, 5}. then they hold for 
R, S c {I, 2,3, 4}. But the marginal probabilities 
for 0'1' 0'2' 0'3' a, are seen to be precisely the values 
we have prescribed above. End of Example 8.1. 

In fact, the question of finding sufficient conditions 
for ferromagnetism is, at the time of writing, open. 
The remainder of this paper will consist of different 
approaches to the problem, which are motivated by 
this question. 

9. EXPONENTIAL.EXPANSION PROOF OF I 
AND II 

In what follows we shall ignore the positive constant 
{l; to make this consistent with what we have above, 
we replace each J A by (lJ A . 

From (1.6) and (2.8) we have, for any R c N, 

Z(O'R) = 2. {O'R)y exp [ 2. JA(O'A)y] 
y AcN 

= 1 (O'R)y i k
1
,[ 1 J A(O'A)y]k 

y k=O. ACN 

= i k
1
, 2. (aR)y[ 2. J A(O'A)y]k 

k=O • Y ACN 

00 1 
= 1-2. (O'R)y 

k=O k! y 

XL' ., 2. J Al ... J Ak(aAI4 .. '4At)y 
AICN AtCN 

1 
= 1 - 2. .. , 2. J Al ••. J A~ 

k=O k! A,cN A,cN 

x 2. (aA14 . " • 4A'4R)y . 
y 
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Now for any set BeN, 

I (a-B)y = I+l - I) = {On 
y yelJ yeB 2 

So 

if B =F rp 
if B = rp. 

(9.1) 

the sum being taken over all ordered k-tuples 
(AI' ... ,Ak) of (not necessarily distinct) subsets of 
N satisfying AI~' .. ~Ak = R. 

Now consider multiplicity functions I-' on the subsets 
of N, that is, functions assigning a nonnegative integer 
I-'(A) to each A c N. Define 

I-'! = IT (f.t(A)!), 
AeN 

~I-' = ~ AIl(A); 
AeN 

(9.3) 

(9.4) 

(9.5) 

the last expression denotes the symmetric difference 
of all the subsets of N, each subset A being taken I-'(A) 
times. 

For example, suppose A, B, and C are subsets of 
N, and suppose I-'(A) = 3, I-'(B) = 1, I-'(C) = 2, and 
I-'(R) = 0 unless R is A or B or C. Then 

III = 1~IBI~, 
I-' = 3!1!2! = 12, 

~I-' = A~A~A~B~C~C = A~B. 

For simplicity, we will sometimes denote a multi­
plicity function I-' by listing the subsets of N, each set 
A appearing I-'(A) times in the list. For example, the 
I-' considered above would be listed 

I-' = (AAABCC). 

Using this notation, we shall list the I-' which assigns 
multiplicity 0 to every set, simply as (0). Note that 
~O = rp. 

Now choose an arbitrary I-' and suppose 

I I-'(A)=k, ~I-'=R; 
AeN 

that is, there are k items on the list for I-' (possibly 
including some repetitions), and the symmetric 
difference of these items is R. Then there are exactly 
k!/ I-'! ordered k-tuples (AI' ... ,Ak) of subsets of N 
having the property that 

III = IAI ••• JAk · 

Each of these k-tuples has in addition the property 

AI~" '~k = R. 

Because of this, we can rewrite (9.2) as 

Z(aR
) = 2n I 1. Ill' 

Il:AIl=RI-'! 

Finally, we define, for each subset R of N, 

I (R) = Z(aR )2-n = I 1.. Ill' 
Il:AII=RI-'! 

It is clear that 
~ (rp) = 2-nZ. 

With this notation, I and II can be restated: 

(I') I (R) ~ 0 for all R c N; 

(II') 

(9.6) 

(9.7) 

(9.8) 

I (rp) I (R~S) ~ I (R) I (S) for all R, SeN. 

Now notice that I' is obvious, in view of the 
definition (9.7), since JA ~ 0 for all A c N. 

Proof of II'; We show that for each I-' the 
coefficient of JIl on the right of II' is either 0 or else 
equal to the coefficient of III on the left (which of 
course is nonnegative). 

Since Iv/v2 = J V1+V2 ' we have 

Similarly, 

So JII will appear in II' if and only if ~I-' = R~S; 
in this case the coefficients of III on the left and right of 
II' are, respectively, 

and 

Lirp) = I 1 
V~1l v!(1-' - v)! 

Av=t/> 

(9.11) 

Defining, for each A c N, 

B/A) = {v ~ 1-': ~v = A}, (9.12) 

we have 

LiA) = I 1 (9.13) 
veBIl(A) v!{f.t - v)! 

and L/A) = 0 iff BIl(A) is empty. Clearly, BIl(rp) is not 
empty, for it contains the multiplicity function O. 
We prove the following proposition: 
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Proposition 1: If B/R) is not empty, then LiR) = 

Lic/»· 

Now observe that every multiplicity function f-l 
can be built up, starting with some f-lo satisfying 
f-lo(A) :::;; 2 for all A c N, by successively adding 2 
to the values of f-l(B) for B which have f-liB) > O. 
For example, 

f-l = (AAAAABBBBCDD) 

can be obtained from 

f-lo = (ABBCDD) 

in stages as follows: 

f-l1 = (AAABBCDD) = f-lo + 2X{A} , 

f-l2 = (AAAAABBCDD) = f-l1 + 2X{A} , 

f-l = #2 + 2X{B} , 

where X{A} is the characteristic function of the class 
{A}, i.e., the function assigning multiplicity 1 to the 
set A and 0 to all other sets. 

Notice also that !:1f-l = !:1f-lo in the above discussion. 
We shall prove Proposition I in two steps: 

(i) Proposition 1 is true provided f-l(A) :::;; 2 for 
all A c N. 

(ii) If Proposition 1 is true for f-l' then it is true 
for f-l + 2X{A) , where A is any set for which f-l(A) > O. 

The following example is for illustrative purposes 
only; we include it to demonstrate how we will com­
pare Lp.(R) and L/c/». 

Example 9.1: Let N = {I, 2, 3, 4}, and let 

A={I,2}, B={I,3}, C={I,4}, 

D = {2, 3}, E = {2,4}, F = {3, 4}. 

Let R = A and S = F, so that R!:1S = N. Fix f-l = 
(AABDDE). We list Bic/» and B/R) , and next 

TABLE IV 

Bir/» 'I'!(,u - v)! 
BiR) 

'I'!(,u - v)! 

(0) 
1 (A) 

2!2! 2i 

(AA) 
2!2! 

(ADD) 
Ii 

(DD) (BD) 
1 

2!2! 2i 

(AADD) 
2!2! (AABD) 2i 

(ABD) 

to each I' in these classes we write [l/I'!(p, - I')!]. (See 
Table IV.) 

Note that here f-l(T):::;; 2 for all TeN, that 
BiR) is nonempty, and also that Lp.(R) = Lic/» = 2. 
So in this example, (i) is confirmed. End of Example 
9.1. 

Now we prove (i). 
Motivated by Example 9.1, we define an equiv­

alence relation on the class of multiplicity functions 
v for which v(A):::;; 2 for all A c N, as follows: 
VI and 1'2 are equivalent if 11'1 - 1'21 assigns the value 
o or 2 to every set. [For example, (B), (BDD), 
(AABDD), etc. are all equivalent.] 

Now Bic/» and BiR) split into equivalence classes; 
each class contains one and only one characteristic 
function (that is, a function whose values are 0 and 1). 
[For example, in Example 9.1, B/c/» and B/R) 
each contain two equivalence classes; the four 
representatives are (0), (ABD), (A), and (BD). We 
have listed the functions above to display the classes.] 

Now each equivalence class will contain exactly 2k 
members, where k is the number of sets A for which 
f-l(A) = 2 and which are assigned multiplicity 0 by the 
class representative. [For example, the first listed 
equivalence class in Bic/» in Example 9.1 contains 
22 members, as there are 2 sets, A and D, which are 
given multiplicities 2 by f-l and 0 by the representative 
(0).] 

However, it is easily seen that [I/v!(f-l - v)!] is 
I/(2!)k for each of these members. [This is where the 
property f-l(A) :::;; 2 for all A c N is essential.] Hence 
the contribution of every equivalence class to Lp.(c/» 
or L/R) is just 1. 

To prove (i), it thus remains to show only that 
Bp.(c/» and BiR) contain the same number of equiv­
alence classes, i.e., the same number of characteristic 
functions. 

A one-to-one correspondence between the char­
acteristic functions in Bp.(c/» and those in B/R) is 
established as follows. For two characteristic functions 
v and r;, define v!:1r; to be the Boolean sum of'll and r;: 

{
o if v(A) = r;(A), 

(v!:11])(A) = 
1 if v(A) =fi r;(A). 

Characteristic functions form a group under Bool­
ean sum; the identity is 0, and V-I = v. Furthermore, 
wecanseethatif~v = Aand~r; = B,then~('I'~1]) = 
A~B. 

Now BiR) is nonempty by hypothesis, so there 
exists 1'0:::;; f-l with ~vo = R. So if 1] E Bic/» , then 
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1]~vo E B,.(R) , since~(1]~vo) = (~1])~(~vo) = cp~R = 
R. Hence the mapping 

1] ---+ 1]~Vo 
is a map from B,.(cp) into B,.(R); because of the group 
property above, it is one-to-one. And it is onto 
because the same operation maps B,.(R) into B/cp). 
End of proof of (i). 

We proceed now with the proof of (ii). 
Let # be an arbitrary multiplicity function satisfying 

~,. = R~S and such that B,.(R) is nonempty. By the 
hypothesis of (ii), L,.(cp) = L,.(R); that is, 

L 1 = L 1 
qEB,.(<lM 7!(# -1])! qEB,.(R)'Y}!(# - 'Y})! 

Suppose A is a particular set with #(A) = k > 0, 
and let 

#1 = # + 2X{A}' 

[For example, if # = (AAABBCD), then #1 = 
(AAAAABBCD).] 

We need to show that L"l(CP) = L,./R). 
Define a new notion of equivalence as follows: 

VI and V2 are equivalent if IVI - v2 1 assigns an even 
multiplicity to A, and 0 to all other sets. [For example, 
(BC), (AABC) , and (AAAABC) are equivalent, 
while (BC) and (BBBC) are not.] Again, this is 
indeed an equivalence. 

Now the equivalence classes in B,.(cp), or in B,.(R), 
will have one of the following forms: 

(A'" AB1B2 ' •• ) -------k ork-l 

or 

(AB1B 2 ' • -) 

(AAAB1B2 " .) 

1 

O!kllX 

1 

21(k-2)!1X 

1 

41(k - 4)11X 

1 
or 

klO!1X 

1 

l!(k - 1)11X 

1 

3!(k - 3)11X 

or 

1 

(k - 1)11!1X 

1 

(k - 1)!1!1X 

Here we have again listed [l/v!(f-t - v)!] next to each 
entry; IX represents the factorials arising from multi­
plicities among Bl , B2 , •••• 

So the contribution of any equivalence class to 
Lp(cp) or L,.(R) is either 

IX~! [ (~) + G) + .. -] 
or 

IX~! [G) + G) + .. J 
(We have used the convention that (~) = 0 when 
j> k.) But the above two expressions are both equal 
to 2k

-
1/lXkL That is, the contribution of any equiv­

alence class in B/l(cp) [or B,,(R)] to L,.(cp) [or L,.(R)] 
is 2k- 1/lXkl, where only IX depends on which equiva­
lence class is being considered. 

Now corresponding to each such equivalence class 
in B,.(cp) or B/l(R) is an equivalence class in B/l1(cp) or 
B/l

1
(R) of one of the following forms: 

(A' .. AB1B 2 ' •• ) 

-------k+2 or k+l 

or 

(AB1B2 ' •• ) 

(AAAB1B 2 " .) 

1 

Ol(k + 2)!1X 

1 

2!k!1X 

1 

(k + 2)!0!1X 

1 

l!(k + 1)!1X 

1 

3!(k - 1)!1X 

1 
or 

(k + 1)!1!1X 

1 
or 

(k + 1)!1!1X 

Here IX is the same constant, depending on the 
equivalence class, as before. The contribution of this 
equivalence class to L/l

1
(cf;) or L/l/R) is 

1 [(k + 2) + (k + 2) + ... J 
lX(k+2)! 0 2 

_ 1 [(k + 2) + (k + 2) ... J 
- lX(k + 2)! 1 3 + 

lX(k + 2)! ock! (k + l)(k + 2) 
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That is, given any equivalence class in Bp(r/» or BiR), 
there exists an equivalence class in B .. (r/» or B (R), 

d Pl 

whose contribution to Lpl (r/» or Lpl (R) is just 
[4/(k + l)(k + 2)] times the contribution of the 
original equivalence class to L/r/» or Lp(R). 

But there are no equivalence classes in Bp,(r/» or 
Bp,(R) which are not obtained in this way, for all sets 
with nonzero multiplicity under fli also have nonzero 
multiplicity under fl. 

Hence 

and 

L (R) = L (R) 4 
Pl P (k + l)(k + 2) 

Since L/r/» = L/R) by hypothesis, the result is 
proved. End of proof of (ii); end of proof of II'. 

10. FINITE-SUM EXPANSION 

The method used in the last section is effective as a 
means of proving the generalized Griffiths' inequali­
ties; but it is somewhat ill-adapted to the examination 
of examples. The reason for this is that there are 
infinitely many multiplicity functions fl on the subsets 
of N, and so any ~(R) is an infinite series. The 
following approach to the problem overcomes this 
difficulty. The cost of the simplification, however, 
is that we are unable to discover a proof of II by this 
method. 

We have, for each R c N, 

Z(aR) = 2 (aR)y exp ({3 2 J A(aA)y) 
y ACN 

= 2 (aR)y IT exp ({3J A(aA)y) 
y AcN 

= 2 (aR)y IT [cosh{3JA + (aA)y sinh {3JA] 
ACN 

(since aA = ±1) 

= ( IT cosh {3J A) 2 (aR)y 
ACN y 

X IT [1 + (aA)y tanh {3J A] 
ACN 

X tanh {3J Al ... tanh BJ Ak' 

where 2* is the sum over all unordered k-tuples 
{AI' ... , Ak } of distinct subsets of N. 

Writing, for convenience, 

K-I = IT cosh {3JA > 0 
AcN 

(10.1) 

and 
'TA = tanh {3JA (0 ~ 'TA ~ 1), (10.2) 

we have 
n 

KZ(aR) = 2 22* (aA ,4 '" AAk4R)y'TAl ... 'TAk 
Y k=O 

Now on account of (9.1), the last sum is 2n when 
AI~' .. ~Ak = R, and 0 otherwise; so 

(10.3) 

where 2' is the sum over unordered k-tuples {AI' ... , 
Ad of distinct subsets of N having the property that 
AI~'" ~Ak = R. 

Now for each subclass ~ = {AI' ... ,Ai} of the 
class 2'\" of all subsets of N, define 

(10.4) 

~~ = Al~ ... ~Ai' (10.5) 

Then we can rewrite (10.3) as 

KZ(aR) = 2n 2 'T9, (10.6) 
9:49=R 

where g runs over all subclasses of 2'v satisfying 
~~ = R, i.e., over all classes of subsets of N with this 
property. 

Finally, define 

We have 

rxR = KZ2-n(aR) = 2 'T9. 
9:49=R 

rx.p = KZ2-n, 

and I and II are equivalent to 

(I") rxR ~ 0 for all R c N, 

(II") rx.prxRM ~ (XRrxS for all R, SeN. 

(10.7) 

Again, I" is obvious, because of (10.2). However, 
as mentioned earlier, we have no independent proof 
of II". 

As an example of the usefulness of the finite-sum 
approach to the problem, we prove the following 
theorem. This theorem is a generalization of Theorem 6 
of Griffiths' paper.6 

Theorem 10.1: Consider a generalized Ising model 
as in the main theorem of Sec. 2, and let 

.it; = {A c N: JA > O}. 

6 R. B. Griffiths. Commun. Math. Phys. 6, 121 (1967). 
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(So we have 

OCR = ! TfJ for all R eN.) 
fJ:fJ c A 
AfJ=R 

Then for any nonempty R c N and any k E R, 

«(JR) ~ ! (tanh (3J s)(aBaR). (10.8) 
s:seA 

keS 

Proof; It is necessary and sufficient to prove 

OCR ~ ! TSOCRAS' (10.9) 
s:seA 

keS 

The left side of (10.9) is 

! T
fJ

, 
fJ:fJ c A 
AfJ=R 

and the right side of (10.9) is 

! ! TsTfJ. 
S:SeA fJ:fJ c A 

kES AfJ=RAS 

Now every term TfJ appearing on the left, appears 
only once on the left. [We may treat the expressions 
in (10.9) as polynomials in the T A; then each term on 
the left has coefficient 1.] We will prove (10.9) by 
choosing an arbitrary rl for which T!; appears on the 
left, and showing that TfJ is also a term in the sum on 
the right. 

We have rl c A, 6.rl = R, k E R. Hence 3.S E rl 
with k E S. Let ~' = ~ - {S} = ~6.{S}. Then ~' c A 
(since rl' c ~ c A), and 

6.rl' = (6.rl)6.(6.{S}) = R6.S. 

Hence on the right appears the term 

fJ' fJ 
TST = T • 

End of proof of Theorem 10.1. 

In the special case of the classical Ising model (see 
Sec. 1), the finite-sum approach gives the well­
known van der Waerden expansion for the partition 
function Z. 

First of all, since JA (and hence TA) is nonzero only 
when A has two elements, we get 

where !* denotes the sum over all classes 

{{ il , i2}, {is , i,}, ... , {i2k- 1 , i2k}} 

of (distinct) 2-element subsets of N satisfying 

{il , i2}6.{ia , i4}6. ... 6.{i2k- 1 , i2k} = rp. (10.11) 

Now (10.11) is equivalent to the requirement that 
each index i appear in an even number of the subsets 

{il' i2}, ... , {i2k- l ,i2k}. Now regard the 2-element 
subsets of N as the edges of the complete graph on n 
vertices (labeled 1,2,"', n), and view the classes 
of 2-element subsets as subgraphs. Then (10.11) is 
equivalent to the condition that each vertex 1,2, ... , n 
have an even number of edges adjacent to it. But this 
in turn is equivalent to the condition that the graph be 
closed; in fact, it may be taken as the definition of a 
closed graph. (See Berge. 7

) 

Finally, in the classical Ising model, we have the 
spins on a square or cubic lattice (which we now 
regard as a graph), and the Jii given by (1.12). Letting 

T = tanhJ, (10.12) 
we have 

0() 

2-nKZ = ! ~(n)Tn, (10.13) 
n=O 

where ~(n) is the number of closed subgraphs of the 
lattice which has n edges. This is the van der Waerden 
expansion for Z. (See van der Waerden.~) 

A probabilistic interpretation of the finite-sum 
approach, and in particular of the OCR given by (10.7), 
is as follows. 

Let h = 2n - 1, and label the nonempty subsets of 
N as Al , A2 , . ~ . , A h • Let 

{3 - TAk 
k - , k = 1,2, ... , h. 

1 + TAk 

Note that 0 ~ {3k ~ i. 
Now consider h independent trials, with the 

probability of success on the kth trial being {3k' the 
probability of failure being 1 - {3k' 

Define, for k = 1,2, ... ,h, 

(
Ak if the kth trial results in success, 

Bk = 
rp if the kth trial results in failure. 

Finally, define 

B = B I6.B26. ... 6.Bh • 

Then for any subset R of N, we see that 

h 

PCB = R) = IT (1 + TAk)-1 ! T!; 

k=1 fJ:AfJ=R 
h 

== OCu II (1 + TAk)-I. 
k=1 

Thus the Griffiths' inequality II is equivalent to 

PCB = rp)P(B = R6.S) ~ PCB = R)P(B = S) 

for all R, SeN. 

7 C. Berge, The Theory of Graphs and its Applications, translated 
by Alison Doig (John Wiley & Sons, Inc., New York, 1962). 

8 B. L. van der Waerden, Z. Physik 118, 473 (1941). 
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11. GROUP ALGEBRA 

The following method of approaching the problem, 
which is due to Lenard, unifies the methods of the 
preceding two sections and paves the way for the 
methods of the next section. For reference in group 
algebras, see Loomis.9 

Let G denote the group (2N, A) of subsets of N 
under the operation of symmetric difference. We write 
G multiplicatively: 

AB=AAB. (11.1) 

The identity in G is cp; each element A is its own 
inverse. 

The (real) group algebra V(G) is the set of all 
functions on G with values in the real numbers fRo 
(We shall customarily express the values of the func­
tions using subscripts; thus the function tl has the 
value tlR at R eN.) Addition and multiplication in 
V(G) are defined by 

(tl + (3)R = tlR + {3R (11.2) 
and 

tl{3 = tl '" {3, (11.3) 

where the convolution tl '" {3 is given by 

(tl '" (3)A = 1 tlB{3B£' = 1 tlB {3AB' (11.4) 
BEG BEG 

The additive identity in D(G) is of course the zero 
function; the multiplicative identity is the function I 
given by 

fA = (

1 if A = cp 

o otherwise. 
(11.5) 

We can view the elements of D(G) alternatively as 
formal linear combinations 

tl = L tlAA 
AEG 

of the elements of G, with real coefficients. The usual 
rules for addition and multiplication of linear com­
binations are seen to coincide with (11.2) and (11.3). 
We then have the linear combination 0 as additive 
identity and f = 1 . cp as multiplicative identity. 

We shall use the notation tlk* for the k-fold con­
volution of oc with itself; that is, the kth power of tl 
in D(G). tl~'" will denote the value of tlk'" at R, and 
must be distinguished from tl1, which is the kth 
power of the number tlR . 

Since G is finite, a sequence of elements ()(k) of 
D(G) converges to tl E D(G) iff it converges point­
wise; that is, 

tl(k) ---+ ()( iff tl~) ---+ ()( A for each A E G. 

9 L. H. Loomis, An Introduction to Abstract Harmonic Analysis 
(D. Van Nostrand Company, Inc., Princeton, N.J., 1953). 

Now G has h = 2n elements, and every function 
tl E D(G) is bounded, so that there exists a real 
number B~ ~ 0 such that 

ItlAI S B~ for all A E G. (11.6) 
Hence 

Itl~"'1 = I L tlABtlB\ S hB!, 
BEG 

and, by induction, 

(11.7) 

INk"'l - ~ N Nk '" < hk-1Bk 
~A - k, ~AB~B - ~. (11.8) 

BEG 

Hence, for each A E G, and every tl E D(G), the series 

~ 1 k'" 
k, - tlA 
k=ok! 

converges (we define tl°'" = I), and we can define a 
new element (exp tl) of D(G) by 

00 1 
exp ()( = I-tlk"'. 

k=O kl 
(11.9) 

Now consider the function J on G, where JA is the 
same as in Sec. 2. Define 

7T = expJ. (11.10) 
Then we have 

( ) ~ 1 k* 
7TR = exp J R = k, - JR' 

k=O k! 
(11.11) 

But it can be seen that 

(11.12) 

so that 

7TR = rnZ(aR ) = L (R). (11.13) 

[See (9.2) and (9.7).] 
Hence the Griffiths inequalities I' and II' of Sec. 9 

(exponential-expansion approach) can be stated in 
terms of the function 7T = exp J in D( G): 

(1111) TTR ~ 0 for all REG; 

(IIIII) 7Tq,7TRS ~ 7TR7TS for all R, S E G. 

We can similarly express the finite-sum approach of 
Sec. 10 as follows. Consider the function T E D(G), 
given by (10.2), and view T as a formal linear combina­
tion: 

T = ITA A. (11.14) 
AEG 

Define a new formal linear combination tl by 

(11.15) 

The coefficient tlR of R in the right-hand member of 
(11.15) is clearly given by (10.7), and hence tlR is the 
same tlR as in Sec. 10. 
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Returning to the function 1T = exp J, one is led to 
consider this function on groups other than (2N, 6.), 
and ask whether III/' holds in these cases. The follow­
ing proposition shows that II'" characterizes the 
group (2N, 6.) in the sense that II'" fails in V( G) for 
any group G other than (2N, 6.). 

Theorem 11.1: If G is ·a group with an element a 
of order r > 2 (or of infinite order), then there exists 
a nonnegative function J E V(G) such that, if 1T = 
exp J, then 

1T11Ta2 < (1T)2. 

Proof: Suppose a is of finite order r > 2. Define 

{
K> 0 if g = a 

J = 
a 0 otherwise. 

Writing 1T and J as formal linear combinations of 
elements of G, we have 

K 2a2 

L1Tgg = exp(Ka) = 1 + Ka +--
YEa 2! 

Kr-1ar- 1 Kr Kr+1a + ... + +-+ + .... 
(r-1)! r! (r+1)! 

Clearly 

Kr 
1TI = 1 + - + ... = 1 + O(Kr), 

r! 

K r+l 

1Ta = K + + ... = K + O(Kr+1), 
(r + I)! 

K2 Kr+ 2 K2 
1T • = - + + ... = - + O(Kr+2). 

a 2 (r + 2)! 2 

Hence 

So there exists a small positive value of K for which the 
asserted inequality holds. 

Now if a is of infinite order, we simply have 1TI = 1, 
1Ta = K, 1Ta2 = tK2, and the asserted inequality is 
obvious. End of proof of Theorem 11.1. 

12. FOURIER TRANSFORMS IN THE GROUP 
ALGEBRA 

In this section we give necessary and sufficient 
conditions for ferromagnetism in terms of the Fourier 
transform of the function 1T of Sec. 11. 

A character of a group is a homomorphism of the 
group into the (multiplicative) unit circle S = 
{ei6

: 0 ~ (j < 21T}. The characters of a group G 

themselves form a group G under (pointwise) multi­
plication; if G is finite, then G is isomorphic to G, 
although in general there is no "canonical" iso­
morphism. 

The Fourier transform of a function f: G - fR is the 
function J: G - fR defined by 

leg) = L g(g)f(g) for g E G. (12.1) 
gEG 

Questions of convergence naturally arise; but in our 
special case G = (2N, 6.) the sum in (12.1) is a finite 
sum, and the topology of G need not concern us. 

Now in the case G = (2N, 6.), every element B 
of G (i.e., subset B of N) induces a character tB of G 
defined by 

(12.2) 

and different sets B give different characters. Hence 
the characters tB exhaust G in this case, and the 
correspondence B ~ t B gives a natural isomorphism 
ofG and G. 

SO the Fourier transform of a real functionf on G 
[that is, an element f of V(G)] is the function 1 
defined on G (which we now identify with G) by 

leA) = L (_l)#(AtlBlf(B). (12.3) 
BcN 

The Fourier inversion formula is 

feB) = 2-n L (-l)#(AtlB)l(A). (12.4) 
ACN 

The central fact we use regarding Fourier trans­
forms is that the transform of the convolution of two 
functions is the (pointwise) product of the transforms 
of the functions. In the notation of Sec. 11, if f, g E 

V(G), then for any REG we have 

/""'-
(f * g)R = (JR)(gR)· (12.5) 

Furthermore, the transform of the sum of two 
functions is the sum of the transforms; in our case, 
since convergence is pointwise in V(G), this extends 
to infinite series of functions. 

Now we have the functions J and 1T in V(G), 
related by 

J 1 2* 1 3* 
1T = exp J = 1 + + - J + - J +.... (12.6) 

2! 3! 

[Note that we can no longer allow J to assume 
infinite values, since we need bounded functions for 
convergence of the right side of (12.6). We can either 
modify the theory to include 00 as a permissible 
value for J, or treat JA = 00 as a limiting case. We 
choose the latter.] 
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Theorem 12.1: JA ~ 0 for all A c N if the follow­
ing two sets of inequalities hold: 

(III) 7rR > 0 for all R c N; 

(IV) 
n 

AcN 
#(AnR)even 

?TA ~ n 
AcN 

#(AnRlodd 

?T A for all non­
empty R c N. 

Proof' It suffices to show that the condition J A ~ 0 
for all A c N implies III and is equivalent to IV. 

Now the Fourier transform of I is 

1 = 1, (12.7) 

where 1 is the function which assumes the value 1 
everywhere on G. And the transform of Jk* is the 
function whose value at R is 

(12.8) 

(the kth power of the number J R)' 
SO taking Fourier transforms on both sides of (12.6) 

gives, for each REG, 

?TR = 1 + JR + !.. J~ + 1..J1 + ... = exp (JR). 
2! 3! 

(12.9) 

Now (12.9) is an equation between numbers; 
"exp" here represents the usual exponential function. 
So if JA ~ 0 for all A, then J is a real function, and 
hence J is a real function. That is, J R is real for all R, 
and so by (12.9) 7rR > 0 for all R. Thus III is proved. 
(Note that we have not yet used JA ~ 0; III depends 
only on JA being real.) 

Now using (12.4), we get 

JB = 2-n ! (_l)#(AnBlJA 
ACN 

= 2-
n

[ ! JA - ! JA ]. 
ACN ACN 

#(AnBleven #(AnBlodd 

However, JA = In 7rA by (12.9); so 

Hence J B ~ 0 for every B ¢ cP iff the above expres­
sion is nonnegative for every B ¢ cP; i.e., iff IV holds. 
End of proof of Theorem 12.1. 

Note that a stronger statement can be made: 
III and IV for a particular R c N are equivalent to 
JR ~ 0 for that R. 

Next we show that ?T is essentially the probability 
function on the set of configurations. For each subset 
R of N, let Y R denote the configuration in which 
every spin in R has the value -1 and all others have 

the value + 1. Define 

PR = P(YR)' (12.10) 

Again, consider {3 to be a factor of every JA . 

Theorem 12.2: 
(12.I 1) 

Proof' 

PR = Z-1 exp (-JeyR) = Z-1 exp [ ! J A(aA)YR]' 
AcN 

But 

(aA)YR={+1 if #(AnB) iseven (12.12) 
-1 if #(A n B) is odd. 

Hence 

ZPR = exp [ ! (-I)#(AnBlJA] = exp JR = ?TR' 
AcN 

End of proof of Theorem 12.2. 

Note that condition III is again seen to hold regard­
less of the nonnegativity of the J A; whenever they are 
real, they define a set of probabilities, which are 
nonnegative. (And if they are finite, the probabilities 
are nonzero.) 

We can now restate Theorem 12.1 in terms of the 
probability distribution as follows: 

Theorem 12.1': JA ~ 0 for all A c N, 

II PA~ 
ACN 

#(AnBleven 

II P A for all BeN. 
ACN 

#(AnBlodd 

(12.13) 

Note that (12.13) holds even for B = cP, as PR ~ 1 
for all R. 

Thus we actually have an answer to the converse 
problem posed in Sec. 8; but the conditions given are 
not in terms of the expected values (aA ). At the time 
of writing, the problem of interpreting (12.12) or IV 
in terms of the (aA ) is open. 

We conclude with an attempt to exploit the duality 
between a function and its Fourier transform, and a 
counterexample which serves to disprove many 
conjectures. 

We have a distribution on the space of configura­
tions given by the function P = Z-1?T, where ?T > 0 is 
the Fourier transform of the moment function 7T ~ O. 
It seems reasonable to guess that ?T is the moment 
function of some other ferromagnetic distribution. 
If this were the case, the probability function of the 
new distribution would be P = Z-17T , where Z is Z 
times a suitable norming constant. 

Then we would have a set of inequalities similar to 
IV for the function 7T. That is, we can conjecture that 
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for every ferromagnetic system given by J A ~ 0, 
we have 

II (aA> ~ II (aA> for all BeN. 
ACN 

#(AnBleven 
ACN 

#(AnBlodd 

(Recall that TTA = 2-nZ(<1A >.) 
In fact, this is false, as the following example 

shows: 

Example 12.1: Let N = {I, 2, 3} and (using the 
form for examples given in Sec. 6) 

X 12 = X12 = 1; 

Xl = X2 = X3 = X23 = X 123 = 1 - e 

for some small e > O. 

Let B = N; the conjectured inequality becomes 

(<1tP>(<11<12>(<11<13>(<12<1a) > 1. 

(<11)«(12)«(13>«(11(12(13) -

(Recall that ctP = 1.) 
Now 

Z* = 1 + 2(1 + e)2 + 4(1 + e)3 + (1 - e)4 

= 8 + 0(1), 

Z*«(11(12) = Z*«(11(13) = 1 - 2(1 - e)2 + (1 - e)4 

= 4e2 + o( e2), 

Z*«(12<13) = 1 + 2(1 - e)2 - 4(1 - e)3 + (1 - e)4 

= 4e + o(e), 

Z*(<1I ) = Z*(<12) = Z*(<13) = Z*(0'10'20'3) 

= 1 - (1 - e)4 = 4e + o(e). 

So the ratio in question, with numerator and denom­
inator multiplied by (Z*)4, is 

[8 + o(1)][4e2 + 0(e2)][4e2 + 0(e2)][4e + o(e)] 
= 

[4e + 0(e)]4 

512e5 + 0(e5
) 0(e4) 

= 256e4 + o( e4) = 256e4 + o( e4) , 

which tends to zero as e tends to zero. So the ratio is 
certainly less than 1 for some small positive values of 
e. End of Example 12.1. 

TABLE V. Relative probabilities 
for Example 12.1. 

a, a. aa Zr 

+1 +1 +1 1 
+1 +1 -1 (1 - €)3 

+1 -1 +1 (I - €)3 

+1 -1 -1 (I - €)' 
-1 +1 +1 (I - €)' 
-1 +1 -1 (1 - €)3 

-1 -1 +1 (I - €)" 
-1 -1 -1 (I - €)' 

Finally, we note here the consequence of Bochner's 
theorem in the algebra we have described. We can 
consider 'iT as a positive measure on G; Bochner's 
theorem then provides that 

7TA = ~ (_l)#(AnBl'iTB 
BCN 

defines a positive semidefinite function on G. 
But it can be seen that the positive semidefiniteness 

of the function 7T is equivalent to the positive semi­
definiteness of the variance-covariance matrix of the 
2n random variables O'A. This, however, is a property 
of all systems of random variables, and is thus not a 
consequence of ferromagnetism. 
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APPENDIX: LIST OF OPEN QUESTIONS 

(1) The major unsolved problem given in this paper 
is the converse problem of Sec. 8: Find conditions on 
the moments (O'R) which imply that JA ~ 0 for all 
AcN. 

(2) One way of solving the converse problem would 
be to interpret the conditions III and IV of Sec. 12 in 
terms of the moments (O'R), Equivalently, find a 
condition on the moments which is equivalent to 
(12.12). 

(3) Give a proof of II" (see Sec. 10) using the 
finite-sum approach of Sec. 10. 

(4) Prove (or disprove) that the average magnetiza­
tion per spin is a concave function of H (see Sec. 7), 
for H ~ O. 

(5) As a sufficient condition for concavity of 
magnetization in the special case of the external 
magnetic field Ising model of (1.13), prove that Diik 

[see (7.10)] is nonpositive in that system. [Example 
7.3 shows that it is not always nonnegative in more 
general systems.] 

(6) Griffiths' inequality II 11/ can be rephrased as 
follows: If Go is any two-element subgroup of (2N, ~) 
and AGo is any coset, then 

II TTB ~ II 7TB' 
BeG. BeAG. 
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For what groups and subgroups does this hold? 
[We know it holds for the cyclic group of order 4; 
and Example 12.1 shows that it does not hold for the 
group (2N, ~) and the subgroup GB = {A: #(A () G) 

JOURNAL OF MATHEMATICAL PHYSICS 

is even}. In addition, we know that it does not hold 
for the cyclic group {I, a, a2 , a3 , at, as} of order 6 
and the subgroup {I, a3}; the question is still open 
for the same group and the subgroup {I, a2 , a4}.] 
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A first-order quadrupole sandwich wave of gravitational radiation explodi~g from a fi:st-order 
Schwarzschild mass is examined to second order. If the second-order field precedmg the sandwIch wave 
vanishes, it is shown that the region of space-time following the sa.ndwich wave ~ontain~ a second~order, 
imploding quadrupole wave. The rest of the sec~md-order field m the space-tIme regIOn followlJ~g ~he 
sandwich wave is also given, and it is seen to consIst of monopole, quadrupole, and 16-pole nonradlauve 
motions. 

1. INTRODUCTION 

In the study of gravitational radiation in a space 
with isolated sources two formalisms have been used. 
Bondi and others, working directly with the metric 
tensor, have been successful in understanding some 
important aspects of retarded radiative solutions. 
Thus Bondi, Van der Burg, and Metzner,! having 
expanded the metric in inverse powers of a luminosity 
parameter, were able to show that a pulse of outgoing 
radiation carries off mass from the source. Recently 
Bonnor and Rotenberg,2 by adding a perturbation 
approximation to the asymptotic expansion of Bondi, 
were able to calculate two additional interesting 
effects. They showed that the emission of gravitational 
radiation is sometimes accompanied by a recoil of the 
source and that, in the quadrupole radiation x 
monopole interaction, "wave tails" must exist in the 
sense that if the space is pure Schwarzschild before the 
emission of the radiation, then after the radiation 
stops the space cannot be stationary. 

A parallel treatment of the problem of radiation 

• Supported in part by Aerospace Research Laboratories, 
Office of Aerospace Research, United States Air Force, and Office 
of Scientific Research. 

1 H. Bondi, M. Van der Burg, and A. Metzner, Proc. Roy. Soc. 
(London) A169, 21 (1962). 

• w. B. Bonnor and M. A. Rotenberg, Proc. Roy. Soc. (London) 
A189, 247 (1965). 

from isolated sources was initiated by Newman and 
Penrose3 and by Newman and Unti.4 Using a null­
tetrad formalism, they worked with an asymptotic 
expansion in inverse powers of an affine parameter 
along the retarded light cones of the isolated source; 
and instead of the metric tensor, they took the 
physical components of the Riemann tensor as the 
fundamental quantities. Subsequently Janis and 
Newman5 worked out the linear theory in the NP 
formalism and proposed on this basis definitions of 
multipole moments for the exact theory. Following 
this, Torrence and Janis6 developed the second-order 
perturbation theory in the NP formalism, with 
advanced radiation solutions explicitly included. In 
the same paper it was shown that, although the 
expansion in inverse powers of an affine parameter 
remains a convenience, at least some second-order 
corrections can be calculated without an asymptotic 
approximation. 

In the present paper a systematic method of 
calculating second-order corrections to first-order 
solutions is used, and a physically interesting result 

3 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). This 
work will be referred to in the text as NP. 

• E. Newman and T. Unti, J. Math. Phys. 3,891 (1962). 
5 A. Janis and E. Newman, J. Math. Phys. 6,902 (1965). This 

work will be referred to in the text as IN. 
• R. Torrence and A. Janis, J. Math. Phys. 8, 1355 (1967). 

This work will be referred to in the text as TJ. 
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presented. We consider weak, gravitational, 2f-pole 
radiation exploding from a small Schwarzschild mass. 
In the particular case where the retarded 2f-pole 
radiation is a sandwich wave, interest has been 
expressed in the nature of the field after the original 
wave has passed-that is, in the existence and nature 
of wave "tails." It has been shown by other authors2 •7 

that, in general, this field is not stationary. It is shown 
in this paper that in second order the most interesting 
part of this field is an advanced 2f-pole wave imploding 
from the first-order outgoing wave to the Schwarz­
schild mass. This wave is associated with a multipole 
moment which is O(v-f ) in the advanced time v,s and 
the wave profile is the (2 + t)th derivative of the 
moment. The case t = 2 is considered in detail, and it 
is shown that the remainder of the wave "tail" for this 
case consists of a set of nonradiative motions,l which 
are monopole, quadrupole, and 16-pole in their 
angular dependence. The imploding wave, whose 
associated moment involves an integral over the 
entire outgoing wave, arises from the mass X radiation 
interaction, and we interpret it as a back-scattering, or 
reflection, of the outgoing wave by the curvature of the 
Schwarzschild space. The nonradiative motions are 
due to the self-interaction of the quadrupole radiation 
and seem interpretable as changes in the source as a 
consequence of the radiation emitted. For example, 
the monopole part is the well-known Bondi mass loss 
effect,I while the failure of a dipole part to appear 
testifies to the nonexistence of a source recoil in the 
t = 2 case.2 Our work represents an advance over 
previous work in that, for the first time (we believe), 
an exact second-order wave tail is calculated and can 
be given a reasonable physical interpretation in terms 
of linear concepts. 

This paper is organized in the following way. 
Section 2 gives some necessary background on the 
null-tetrad formalism. Section 3 presents a systematic 
method of calculating second-order corrections, and 
discusses the second-order initial data problem. In 
Sec. 4 the mass x radiation interaction is analyzed 
in detail and the radiation x radiation interaction is 
considered. The main results of the paper are sum­
marized in a short concluding section. 

2. NULL-TETRAD FORMALISM 

We use throughout this paper the spin-coefficient 
formalism of NP,3 and give a brief review of it in this 
section. 

Consider a tetrad of basis vectors tp. , np" mp' , and mp' 

7 E. Newman and R. Penrose, Phys. Rev. Letters 15, 231 (1965). 
• We define lex) = O[g(x)] to mean that there exist A and a 

independent of x such that/ex) ~ Ag(x) for a < x. 

in the four-dimensional Riemannian space satisfying9 

tp.np. = -mp.mp. = 1, 

tp.tp. = np.np. = mp.mp. = tp.mp. = np.mp. = O. (2.1) 

The vectors mp' and mp' are defined by mp' = 
(IJ-J2)(ap. - ibp.) where ap' and bp. are real, unit, 
mutually orthogonal spacelike vectors, and the bar 
denotes complex conjugation. It follows from Eq. (2.1) 
that the metric is given in terms of the tetrad by 

gp.v = tp.nv + tvnp. - mp'mv - mvmp.' (2.2) 

After certain definitions are made, a set of partial 
differential equations are derived in NP which are 
equivalent to the Einstein field equations. The needed 
definitions are: intrinsic derivatives, . 

DeI> == eI>;p.tp., ~eI> == eI>;p.np., beI> == eI>;p.mp., 

JeI> == eI>;p.mp., 
(2.3) 

for an arbitrary scalar eI>; combinations of Ricci 
rotation coefficients (called spin-coefficients), 

K == tp.;vmp.tv, 

7T == - np.;vmp.tv, 

E == Htp.;vnp.r - mp.;vmp.tV), 

p == tp.;vmp.mv, 

A == -np.;vmp.mv, 

ex == Htp.;vnP.mv - mp.;vmp.mV), 

a == tp.;vmp.m v, 

ft == -np.;vmp.mv, 

fJ == Htp.;vnP.mv - mp.;vmp.mV
), 

_ -p. v 
V = -np';vm n, 

Y == i(tp.;vnp.nv - mp.;vmp.n V
), 

T == tp.;vmp.n v; 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

(2.4f) 

(2.4g) 

(2.4h) 

(2.4i) 

(2.4j) 

(2.4k) 

(2.41) 

and independent components of the Weyl tensor, 

'1"0 == -Cp.vp"tp.mvtPm", 

'F\ == -Cp.vp"tp.nvtPm", 

0/2 == -Cp.vp"mp.nvtPm", 

'1"3 == -Cp.vp"mp.nvt Pnt7
, 

'1"4 == -Cp.vp"mp.nvmPn". 

(2.Sa) 

(2.Sb) 

(2.5c) 

(2.5d) 

(2.Se) 

Before writing down the field equations we impose 
(without loss of generality) several simplifying 
coordinate and tetrad conditions which are both 

• Tensor indices denoted by Greek letters range and sum from 0 
to 3. Tensor indices denoted by lower case Latin letters range and 
sum from 2 to 3. The letter A used as a subscript will be understood 
to range from 0 to 4 unless otherwise noted. Ordinary partial 
differentiation is denoted in the usual way or by a comma, and 
covariant differentiation is denoted by a semicolon. The metric has 
signature -2. 
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convenient and natural to adopt in dealing with 
radiation problems. A parameter u which labels null 
hypersurfaces of the hyperbolic Riemannian space by 
u = const is taken as the timelike coordinate, i.e., 
XO = u. The null-tetrad vector til is chosen as til = 
U,Il = b~ so that it is normal to the null hypersurfaces. 
It is then also geodesic. Let Xl = r denote the affine 
parameter along the null geodesics lying in the null 
surfaces, and let the Xi label the different geodesics 
on each hypersurface. Then we have til = dXIl/dr = 
b~. The relation gll't, = til implies gOI = 1 and 
gOO = gOi = O. This form of til produces the following 
results on the spin-coefficients: 

K = 0 (til is geodesic), 

E + i = 0 (til in terms of an affine parameter). 

p = p (til is hypersurface orthogonal), 

T = Ii + {3 (til is equal to a gradient). 

We also parallelly propagate nil along til' which gives 
7T = 0, and mil and mil along til' which gives E - i = O. 

In compliance with Eqs. (2.1) the vectors nil, mil, 
and mil take the form 

with 

nil = ()~ + U()f + XW. 
mil = wbf + ~W. 

(2.6a) 

(2.6b) 

gll = 2(U - ww), (2.7a) 

gli = Xi _ aiw + ~iW), (2.7b) 

gil = -ai~j + ~i~;). (2.7c) 

In terms of the qiuantities introduced in Eqs. (2.6), 
Eqs. (2.3) become 

D = E... b = wi + ,; ~ , 
or or ox· 

~=ui+i+XiL.. or ou ox' 

(2.8) 

We call the set of quantities defined by Eqs. (2.4), (2.5), 
and (2.6) tetrad-formalism (TF) variables. 

The empty-space field equations may now be 
written as3 

D~i = p~i + G~i, 
Dw = pw + GOO - T, 

DXi = f~i + T~i. 
DU = fw + TOO - (y + y), 

Dp = p2 + Gjj, 

Da = 2pa + 'Yo. 

DT = pT + af + '1'1. 

Dr:x. = pr:x. + ii{3, 

D{3 = p{3 + ar:x. + '1'1. 

(2.93) 

(2.9b) 

(2.9c) 

(2.9d) 

(2. lOa) 

(2. lOb) 

(2.1Oc) 

(2.IOd) 

(2.IOe) 

Dy = Tr:x. + f{3 + 'Y2 , 

D).. = p).. + iiI-', 
DI-' = PI-' + a).. + 'Y2 • 

D'll = T).. + fp + 'Y3 • 

(2.1Of) 

(2.10g) 

(2.IOh) 

(2. Wi) 

bXi - ~;i = (I-' + Y - y)~i + Mi, (2. 11 a) 

b~i - J;i = (Ii - r:x.)~i - ({3 - Ii)~i, (2. II b) 

()oo - 8w = (Ii - r:x.)w + (Ii - (3)iiJ + p - il, 

(2. II c) 

()u - ~w = (I-' + y - y)w + Aw - p, (2.lld) 

~A - J'll = 2r:x.v + (y - 3y - p - fi»). - 'Y" 

(2.12a) 

bp - 8a = Tp + (Ii - 3r:x.)a - 'YI , (2.12b) 

b:x - J{3 = pp - )..a - 2r:x.{3 + exli + {31i - '1'2' 

()A - JI-' = fl-' + (Ii - 3(3»).. - 'Ys , 

b'll - ~p = Yl-' - 2{3'll + Yl-' + 1-'2 + ).A, 

(2.12c) 

(2.12d) 

(2.12e) 

by - ~{3 = TI-' - a'll + (I-' - y + y){3 + r:x.A, 
(2.l2f) 

()T - ~a = 2T{3 + (y - 3y + I-')a + Ap, (2.12g) 

~p - JT = (y + y - il)p - 2r:x.T - Aa - 'Y2 , 

(2.12h) 

~ex - Jy = p'll - T).. - (3).. + (y - y - fi)r:x. - 'Ys. 

(2.12i) 

Equations (2.9) and (2.10) are called radial equations 
because of the absence of au derivative; Eqs. (2.11) 
and (2.12) are called nonradial equations. The Bianchi 
identities in this tetrad formalism are 

D'I' A - J'I' A-I 

= (5 - A)p'l' A - 2(3 - A)ex'l' A-I + (l - A»)''Y A-2' 

(2.13) 
~'Y A-l - ()'Y A 

= (A - l)'ll'Y A-2 - 2(A - 3)y'Y A-I + (A - 5)T'Y A 

- AI-''I' A-I + 2(A - 2){3\f" ... - (A - 4)a'Y A+I , 

(2.14) 
where A = 1,2,3,4. 

3. PERTURBATION THEORY 

In this section the structure of the field equations 
and their solutions is examined in perturbation theory. 
We assume that each TF variable is expandable in a 
small parameter, and we write, for example, p = 
(O)p + (I)p + (2)P .. " where the subscript "zero" 
denotes flat space. For ease of writing, in the remainder 
of this section we omit the subscript from those TF 
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variables which are the order indicated by the title 
of the subsection in which they occur. 

A. Zeroth-Order Field 

The zeroth-order field is simply flat space-time, and 
in null-spherical polar coordinates it is given by 

'fA = 0, 

rp, = U = -t, 1 
p= --, 

r 

../2 
at = - (J = - - cot 6, 

4r 

(3.1) 

i ../2 ( i) ~ = 2r"" 1, sin 6 ' 

with all other TF variables equal to zero. (We have 
restricted our attention in this paper to spaces with 
asymptotically Euclidean topology.) 

B. First-Order Field 

The first-order field satisfies the linearized field 
equations of general relativity, and we use here a form 
of the linear-theory analysis given in IN and TJ. The 
Riemann tensor (given by the 'fA) is considered to be 
a field in flat space which satisfies the linearized form 
of Eqs. (2.13) and (2.14). Thus we have 

. 1 J2 
'fo - tD'fo - - 'fo + - 5'f1 = 0, (3.2) 

2r 2r 

4 ../2 
D'fl + - 'fl + - ()'Yo = 0, (3.3a) 

r 2r 

3 ..}2.,-
Do/2 + - 0/2 + - 00/1 = 0, (3.3b) 

r 2r 

2 /i 
D'fa + - 'fa + - W 2 = 0, (3.3c) 

r 2r 

1 ..}2 
Do/4 + - 0/4 + - Wa = 0, (3.3d) 

r 2r 

· 1../2 
0/1 - tD'fl - - 'Yl + - 00/2 = 0, (3.4a) 

r 2r 

· 3 /i 
0/2 - tDo/2 - - 0/2 + - Oo/a = 0, (3.4b) 

2r 2r 

· 2 J2 
0/3 - iD'P3 - - 'P3 + - o'P4 = 0, (3.4c) 

r 2r 

where the dot denotes a/au, and 0 and (5 are angular 
differential operators defined in Appendix A. 

We make the assumption that 'Yo = 0(r-5) as 
r --+ 00 (and the same assumption will be made for all 
perturbative orders); this insures us that the space is 

asymptotically flat at the corresponding null infinity3 

and permits the following analysis of Eqs. (3.2), (3.3), 
and (3.4). Equations (3.3) are satisfied by 

(3.Sa) 

'Y = - - - r'2()'Y dr' 'Y~ ..}2 i r 

2 r3 2r3 eo l' 
(3.Sb) 

'YO ../2 [r _ 
'fa = -; - -2 r'0'Y2 dr', 

r 2r. eo 
(3.Sc) 

'Yo ../21r 
'f4 = _4 - - ()'Ya dr', 

r 2r eo 
(3.Sd) 

where 'Y~ (A = 1, 2, 3, 4) are arbitrary functions 
independent of r. When Eqs. (3.S) are substituted into 
Eqs. (3.4) and (3.2), it is found that, respectively, they 
are equivalent to 

and 

'Y~ = -t..}2 o'Y~, 

'Y~ = -t../2 5'f~, 

'Y~ = -l..}2 5'f~, 

(3.6a) 

(3.6b) 

(3.6c) 

'Yo - tD'fo.- 1. 'Yo -..!... (' r,a/:'JWo dr' 
2r 2r5 

Jeo 

../2 /:'J'f~ +---=0. (3.7) 
2 r5 

The 'Y A can now be determined. The 'f~ (A = 1, 2, 
3,4) are known through Eqs. (3.6) when 'Y~ (u, 6, cfo) 
is given and 'f~, 'f~, and 'f~ are given at one particular 
value of u. Next 'Yo is found by solving Eq. (3.7). The 
remaining 'fA are then found from Eqs. (3.5) by r 
integration. Thus the major equation which must be 
solved is Eq. (3.7)-for all the other equations are 
solved by straightforward r or u integrations. 

In order to complete the first-order calculations it 
is necessary to find the rest of the TF variables. They 
are obtained by linearizing Eqs. (2.9) and (2.10) and 
integrating them. The results are 

p = 0, 

1 i r 

{J = -iX + - r''P1 dr', 
r eo 

7" = oc + {J, 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

(3.8e) 

(3.8f) 
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1 iT ft = - r''F2 dr', 
r ex:, 

(3.8g) 

A = - - jj dr' + - , 1 iT AO 
2r 00 r 

(3.8h) 

l' = - ~dr' + 'Y3dr', iT - iT 
ex:, 2r co 

(3.8i) 

u = - L(y + y)dr', (3.8j) 

1 iT W
O 

OJ = - - r'T dr' + - , 
r 00 r 

(3.8k) 

IT iT -i -i 'T I i 'T I X = r(O)$ - dr + r(O)$ -dr, 
00 r' 00 r' 

(3.81) 

$i = (O)'¥J~ a dr', (3.8m) 

where aO, .1°, and Wo are functions independent of r 
arising from the integration of Eqs. (2.9) and (2.10). 
The remaining field equations, Eqs. (2.l1) and (2.l2), 
are then satisfied if 

10 -'-0 
/1. = a, (3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

(3.ge) 

A statement of the first-order initial data problem, 
consistent with that of the full theory, 4 can now, with 
the aid of Eqs. (3.9), be given. If one gives 'Y;(e, cp) + 
qr~(e, 4», 'F~(e, cp), and 'Fo(e, cp, r) at a particular 
value of u and aO(u, e, cp), one can obtain all of the 
first-order TF variables. Information about the 
retarded and advanced radiation is contained in 
aO(u, e, cp) and 'Fo(r, e, cp),6 respectively, while these 
quantities combine with the rest of the initial data to 
fix the nonradiative (including the stationary) part of 
the solution. [It should perhaps be pointed out that 
there is no inconsistency between Eq. (3.6b) and Eq. 
(3.9c), only redundancy.] To avoid angular singular­
ities we must take aO = I.t:,2 I.!"=-t aIm 2 Ytm (the 
2Ytm are defined in Appendix A); then Eq. (3.9c) 
prevents imaginary ("magnetic") monopoles from 
appearing.s 

It is interesting to note that this exclusion of the 
magnetic monopoles is the only modification of the 
first-order 'FA' as obtained from the Bianchi identities, 
imposed by the field equations. This is always true in 

the highest perturbative order treated, i.e., the 
(n)'F A may be obtained from the nth-order Bianchi 
identities knowing the other TF variables to order 
n - 1, then the nth-order field equations will only 
restrict the (n)'F A by requiring that 

(n)aO = 1: (n)atm2 Y{m' 
(,m 

Solutions of Eqs. (3.2), (3.3), and (3.4) are given 
here, representing axially symmetric, first-order fields. 
The retarded and advanced 2Lpole fields are, respec­
tively, given by 

'Y A = 2(2-A)/2 K2_A( t) 2-A Yto r f-2 

x d t- 2+.A[at(u)/rcl+3-A)], (3.10) 

and 

'Y A = 2(2-A)/2 K A-2(/) 2-A Yeo r t-2 

X Df+2-A(bt(u + 2r)/r(t-1+A)], (3.11) 
where 

a a 
d == -2- +-, au ar 

K (t) == [(I + P)!J* 
P (I - p)! ' 

sYto = 0, for lsi> I. 

Here at(u) and bt(u + 2r) are arbitrary functions of 
their arguments (for t ~ 2) and are proportional to 
the retarded and advanced 2tth-muItipole moments, 
respectively. For t = 1, al and bI are real and 
constant; and for 1 = 0, ao and bo are real and 
constant. That Eqs. (3.I 0) and (3.11) are solutions to 
Eqs. (3.2), (3.3), and (3.4) may be verified by direct 
substitution, use of Eq. (B3), and use of Appendix A 
(where the spin-s spherical harmonics s Ye mare 
defined and their pertinent properties given). 

Several comments should be made about the 
solutions. Their designation as retarded and advanced 
solutions, respectively, follows from the designation 
of u as the label of the future null cones. Nothing in 
the formalism forces this choice on us. If u is assumed 
to increase into the future, then v == u + 2r will label 
past null cones, and it also will increase into the 
future. The second point is that, although Eqs. (3.l0) 
and (3.1 1) were presented as first-order solutions, we 
caIl any 'FA of this form "formally linear," no matter 
what its order happens to be. This terminology will 
prove useful in what follows. 

The designation of aeCu) and bt(u + 2r) as propor­
tional to the 2tth-multipole moments of the retarded 
and advanced fields, respectively, is consistent with 
the moment definitions suggested in IN and with 
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their generalization to include advanced solutions.6 

In addition we say that a linear retarded solution is a 
nonradiative motion1 if 0'0 = 0, i.e., if 

dl+! 
~at(u) = 0, 
du 

with a corresponding defi.nition for advanced solutions. 
It should be noted that a given nonradiative motion 
can be looked upon as a special case of either a 
retarded or an advanced solution. 

C. Second-Order Field 

The perturbation theory considered here consists 
of finding the higher-order corrections to a given 
linear combination of first-order multipole fields. 
With all first-order quantities known, the equations 
governing the second-order'Y A are Eqs. (2.13) and 
(2.14), keeping only second-order terms. These 
equations are the same as Eqs. (3.2), (3.3), and (3.4), 
except that the zero right-hand sides are replaced by 
terms (called driving terms) involving quadratic 
products of known first-order quantities. The terms 
driving Eqs. (3.3) are, respectively, R1 , R2 , R3, and 
R4 , where 

Rl = (-4 (1)IX + (UJ) (1)'Y 0' 

R2 = (-2 (1) IX + (1)6)(u'Y1 - (1).1. (l)'Yo, 

R3 = (1)6 (1)'Y 2 - 2 (1).1. (1)'Y 1, 

R4 = (2 (1)IX + (1)6) (1)'Y 3 - 3 (1).1. (l)'Y 2 • 

(3.12a) 

(3.12b) 

(3.12c) 

(3.12d) 

We do the same integrations and substitutions with 
the driven equations as we did for Eqs. (3.2), (3.3), 
and (3.4) before, and we find that the second-order 
counterpart of Eq. (3.7) is 

'Y - iD'Yo _1.. 'Yo - J.. f>3()i5'f"0 dr' 
o 2r 2r5 )ao 

where 

+ ";2 ~'f"~ = Do, (3.13) 
2r 

Do == (-(1) U :r - u>X
i a~i + 4 (1)y - (l),u) (1)'Yo 

+ (-4 (l)T - 2 (l,{3 + (l)t5) (1)'Y1 + 3 (1)0' (l)'f" 2 

- J2 rr'4()R1 dr', (3.14) 
2r5 J" 

and the second-order counterparts to Eqs. (3.6) and 
(3.9) are4 

(3.15a) 

(3.15b) 

H? uro 1("2 ° lI.2 -0) + -0 • ° 0':'0 
T ~ - T 2 = "2 u 0' - U 0' (1)0' (1)0' - (1)0' (1)0' , 

(3.15c) 

'Y~ + \f~ = !(/52aO + ()2iJo) - (1)O'
o
(Uao - (1)a°(l)i1°, 

(3.l5d) 

. ° ";2 ° ° nro 
'Y1 = - - <;'Y2 + 2(1)0' (l)T3' 

2 

° ";2-0 
(J) = - - ()O' , 

'0 ':"0 
/L = 0' . 

2 

(3.15e) 

(3.15f) 

(3.15g) 

The second-order problem is solved, except for 
straightforward r integrations, when 'Yo is found as a 
solution to Eq. (3.13). We present here a general 
method of solving this equation. The method is 
applied in Sec. 4 to two special cases, and what we 
believe to be physically interesting results are obtained. 

Consider the linear field to be a superposition of 
fields associated with multi poles , both retarded and 
advanced. Then Do will be a sum of quadratic terms 
in which one factor comes from a 2t multipole and the 
other from a 2t' multipole. We can symbolize this 
statement by 

Do = ! [Do(Rt X Rt') 

+ Do(Rt x At') + Do(At x At')], 

where R indicates that the multi pole is retarded and 
A indicates that the multipole is advanced. Because 
Eq. (3.13) is linear it is sufficient to be able to solve 
for that part of 'Yo [denoted by 'YoCt x t')] which 
arises from a single prototype driving term, which we 
denote by Do(t X t'), leaving the retarded or 
advanced nature of the multi poles unspecified for the 
time being. 

The angular dependence of 'Y o( txt') is easily 
determined. When the first-order quantities are put 
into Eq. (3.14), it is seen that the angular dependence of 
Do( txt') arises from the products 

oYto 2Y£'0, 

2YtOOYto, l YtO lYt'O' -lYtO aYt'o, 3YtO-lYt'0' 

-2Yto 4Yt'O' and 4YtO -2Yt'0' 

Each of these products has a finite expansion of the 
form Ca 2 Y20 + C4 2 Y40 + ... + Ct+t' 2 Yt+t'o if t + 
t' is even or C3 2 Yao + Cs 2 Yso + ... + Ct+t' 2 Yt+t'o 
if t + t' is odd. Therefore DoV X t') is also a finite 
series in 2 Y LO which we write aslO 

t+t' 
Do(t x t') = ! DOL(u, r) 2Y La' (3.16) 

L=2,3 
10 Throughout the remainder of this section L is to be understood 

to range and sum over even integers 2 to t + t' if t + t' is even, 
and over odd integers 3 to t + t' if t + t' is odd. 
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Since 2 Ylo is an eigenfunction of 63 (see Appendix A) 
we may eliminate the angular dependence from Eq. 
(3.13) by taking '¥o(t x t') = L~·:~{3foL 2YLO' and, 
since 5,¥~ has spin weight 2 (see Appendix A), ex­
panding 5,¥~ as 5,¥~ = Li:!;.3 (5'¥~)L 2YLO' We obtain 

I L(L + 1) - 2 
IoL - tDfoL - 2/0L + 2r5 

i
r 12 (5'1'°) 

x r'YoL dr' + V 5 1 L = DoL(t X t'). 
00 2r 

(3.17) 

We now confine our efforts to interactions driven 
by Do(Rt x Rl'). From the expressions given previ­
ously for the retarded 2/-pole fields, we fino the form 
of the retarded x retarded driving terms to be 

t+f' h () 
D (Rt X Rt') = ~ Ln U OL 4. n+5' 

n=O r 
(3.18) 

where hLn(u) depends on t, t', (l)al(u), and (l)ar(u). 
The solution of Eq. (3.17) for a prototype DOL = 
hLn(U)/rnH is discussed in Appendix B, and the 
reader is referred there for the details. The term 

J2(5'¥~)L/2r5 has a first-order counterpart in the 
linear theory, and an examination of Eq. (3.10) for 
A = 0 enables us to obtain the piece of second-order 
'1'0 corresponding to this term. Using this information 
and the results of Appendix B, we definell 

and12 

2( -1)L+2i U I+f' 2 n-Ln ! 
BL = L----

K_2(L) -00 n=O (n + L + 2)! 

X hLn(U') du' + HL , (3.20) 
(u + 2r - uT-L

+2 

where H L is an arbitrary function of u + 2r, the 
K1J(L) were defined after Eq. (3.11), and 

dL - 1 12 (5'1-"°) 
--G (u) = (_1)L-I V 1 L. (3.19b) 
dUL-l L 2L+l 

The complete solution for the second-order 'I' A for 
the interaction of retarded fields can now be given: 

1+1' 
'¥o(t x t') = L 2K_22 YLo[AL + rL

-
2
D

L+2( ~~1)~' 
L=2.3 r ~ 

(3.21a) 

11 An integral similar to that in Eq. (3.20) is used by Bonnar in 
Ref. 2. 

11 The lower limit on this integral in BL could be replaced by an 
arbitrary function of u + 2r. This freedom however can be absorbed 
by HL • 

(3.2Ib) 

fro I ir
" 

X - r'3A dr' dr" drill dr"" ,,2 L 
00 r 00 

+ rL-2DL-2(~s)J +; {r'Re dr', 

(3.2Ie) 

with '¥~, '¥~, '¥~, and '¥~ given by Eqs. (3.15). Note 
that the integrations indicated in Eqs. (3.21) are 
trivial to perform. 

We now discuss some important features of the 
solution. Equations (3.21) contain all of the second­
order initial data explicitly. The set of functions 
HL(u + 2r) determines the incoming radiation and 
gives part of the nonradiative information. Clearly 
solutions corresponding to different choices of H L 

differ by "formally linear" solutions. The news 
function (1°(u, fJ) may be freely given and, along with 
'¥~ and ('¥~ + qr~) at a particular time, determines 
[through Eqs. (3.15)] '¥~, '¥~, '¥~, and '¥~. Thus the 
outgoing radiation and the rest of the nonradiative 
information is now fixed. The L - 1 constants of 
integration needed in evaluating GL(u) from Eq. 
(3.l9b) can be conveniently fixed by demanding that 

dk 

- GL(u)/_oo = 0, k = 0, J,' . " L - 2. (3.22) 
duk 

The freedom corresponding to different choices of 
these constants can be absorbed by H L . 
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It is of interest to note that in some cases the 
solution may be quite simple. For arbitrary hnL(u) 
the integrand appearing in BL is, of course, not 
generally a total derivative with respect to u' ; however, 
for some I and I' and arbitrary (l)a,(u) and (1)ar (u) 
it may be, and in such a case the parts of the \f" A not 
arising from HL are finite series in l/r. As we see 
later, for DOL(RO X R2) this integrand is not a total 
derivative but for DOL(R2 X R2) it is. 

Finally, it should be noted that the methods 
presented in Appendix B allow us to solve the 
second-order problem for any type interaction term 
DOL(I X t'), not only DOL(Rt X Rt'); also these 
methods are applicable at higher orders because the 
nth-order field corresponding to fOL will satisfy Eq. 
(3.17) with different driving terms. 

IV. SECOND-ORDER CORRECTIONS 

A. Mass X Radiation Interaction 

The method of calculating second-order corrections 
to first-order retarded solutions, presented in Sec. 3, 
is applied in this section. The problem being considered 
is that of a Schwarzschild mass of small magnitude at 
the focus of a retarded quadrupole wave of gravita­
tional radiation with small amplitude. The second­
order correction divides naturally into two parts: 
the interaction between the mass and the quadrupole 
radiation, denoted by (RO X R2), and the interaction 
of the quadrupole radiation with itself, denoted by 
(R2 X R2). First the (RO X R2) interaction is solved 
exactly, then the (R2 x R2) interaction is considered; 
in addition, the main features of the (RO X Rt) 
interaction are discussed. In this section all quantities 
are second order unless otherwise specified or ob­
viously something else from their context. 

The first-order solution which we wish to correct is 

where m is equal to the Schwarzschild mass and 
q = q(u) is the first-order quadrupole moment 
associated with the radiation field. Using Eqs. (3.8), 
(3.9), and these \f" A' it is a simple matter to obtain all 
the other TF variables to first order. The results are 
given in Appendix C. If we evaluate the driving terms 
defined by Eqs. (3.12) and (3.14), we obtain 

(9 15q) Do(RO X R2) = m ;S + 7 [tK2(2) 2Y20], (4.2a) 

R1(RO X R2) = R2(RO X R2) = 0, (4.2b) 

R4(RO X R2) = m(~ + L + 'i7)[-6K_2(2)_2Y201. 
r 2r5 2r 

(4.2d) 

We now fix some of the second-order initial data. We 
pick aD = 0 and set \f"; + qr; = \f"~ = 0 at u = - 00, 

implying, through Eqs. (3.15), that 

aD = \f"~ = \f"~ = \f"~ = \f"~ = O. (4.3) 

Eq. (3.19b) gives us [dG2(u)[du] = 0, so, in accord­
ance with Eq. (3.22), we get 

(4.4a) 

A comparison of Eq. (4.2a) and Eq. (3.18) gives us 

h20 = q(U)(m~(2»), 

h21 = 0, (4.4b) 

h _ ()(15mK2(2») 
22 - q U • 

4 

Substituting Eqs. (4.4) into Eqs. (3.19) and (3.20), we 
can evaluate A 2 and B2 • If we substitute A2 and B2 
into Eqs. (3.21) we obtain 

\f"o(RO X R2) = [~! + D4(~2)](;)[2K_2(2)2Y20]' 

\f"l(RO X R2) = [ - ~5 + D3(!:)] 

X (;) [,J2 K_l(2) lY20]' 

(4.5) 

\f"3(RO X R2) = [_1... + 'i6 + D(I:)~ 
r 4 2r r ~ 

\f"iRO X R2) = -3 + -4 + -"5 - [lK2(2) -2Y20]' ( 
ej if 12) (m) 

2r 2r r 2 
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with -J" q(u') , 
(U12 = ,2 du + H2 , 

-co (V - u ) 
V == u + 2r. (4.6) 

Since we will be dealing with sandwich waves, we 
have assumed that (1)q( - (0) = O. The initial data 
has now been entirely fixed, except for H 2 , which is an 
arbitrary function of u + 2r. Two particular choices 
of H2 are made below in our discussion of the inter­
pretation of the solution. 

To aid us in discussing the second-order effects 
accompanying first-order radiation we use the 
concept of "wave tails." l.2 If a linear radiative solution 
that vanishes in a certain region of space-time gives 
rise to a second-order correction that is nonvanishing 
in that same region, the second-order correction in 
that region will be called a tail of the linear radiative 
solution. On the other hand, terms in the second-order 
correction which are nonvanishing only where the 
first-order radiative solution is nonvanishing will be 
called transient terms. Although some transient 
effects are calculated here, we do not yet know how to 
interpret them. Our main interest is in wave tails 
because we shall find it possible to interpret those 
appearing in this paper by referring to the linear 
theory. 

We now assume the wave to be a sandwich wave of 
thickness 2uo and to be centered about u = 0, and 
we want to restrict our attention to the regions 
u < -Uo and u > +uo ' In these regions the solution 
given by Eqs. (4.5) reduces to 

'1"0 = imDt(~) [2K_2(2)2Y20]' 

'1"1 = tmD3(~) IJ2 K_tC2) lY20J, 

'1"2 = imD2(~)(oY20)' (4.7) 

'1"3 = imD(~) [~ K1(2) -IY20 J. 
(12)" '1", = im ;:s [iK2(2L2Y20]' 

where 12 was defined by Eq. (4.6). Thus the sandwich 
wave in a Schwarzschild space has a tail on either 
side of the sandwich, and it is given by Eq. (4.7). 

It is helpful to substitute particular choices of 
(Ilq(u) and HL(u + 2r) into Eqs. (4.7). For clarity 
in describing the results we shall use Penrose's 
pictures to help in the presentation. In Fig. 1 an 
"empty" Penrose picture is shown as an example. 
Future and past temporal infinity and spatial infinity 
are labeled 1+, [-, and r, respectively. Future and 
past null infinity are labeled by J+ and J-, respectively. 

Constant retarded and advanced time surfaces are 
also shown. 

As an example let us choose (uq(u) = Qt5(u). Thus 
the first-order solution is simply a shock wave of 
magnitude Q exploding from a mass equal to m. 
Let us consider two possible H 2(u + 2r)'s: (a) 
H 2(u + 2r) = 0; (b) H 2(u + 2r) = _Q/V2. The inte­
gral in 12(u, v) is easily evaluated, and we find that the 
solutions are 

'FA = 0, U < 0, 

'F = D4- A (M2(V») 2(2-A)j2 K (2) Yo u > 0, A r1+A A-2 2-A 20, 

(4.8a) 

'F = _D4-A (M2(V») 2(2-A)/2 K (2) Y < 0 A r1+A A-2 2-A 20' U , 

'FA = 0, U > 0, (4.8b) 

where M2 = (Q/V2) (m/2). By comparison with Eq. 
(3.10 we see that the nonvanishing part of the solu­
tions, Eqs. (4.8), is simply an incoming quadrupole 
radiation solution with moment ±M2 • The two 
solutions are represented pictorially in Fig. 2. The 
case H2 = 0 is the physically realistic one. It shows 
that the outgoing first-order shock wave is partially 
reflected by the curvature of the Schwarzschild space 
and is back-scattered to the point from which it 
came. The two cases differ by a "formally linear" 
solution. Thus, if for v > 0 just the right second-order 
quadrupole wave was coming in from infinity, it 
would cancel out the back-scattered wave, and the 
first-order wave would be preceded by a tail instead 
of followed by one. The case !mH2 = - M2 is an 
example of such an incoming wave. 

It should be emphasized that the solutions given by 
Eqs. (4.8) are not "formally linear" solutions. In a 
part of space-time they are indistinguishable from 
"formally linear" solutions, which permits an easy 
interpretation. 

Obviously the above results are in no way depend­
ent on the use of the 15 function. For example, a 

u: constant 

1° 

v = constant 
~-

FlO. 1. Penrose Picture. 
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(l)m=mass 

FIG. 2. Wave tails for (l)q(u) = Q<5(u). 

square wave of height Q and thickness 2uo yields 
M2 = [2uo QI(v2 - u~)]( -mI2). 

It is possible to calculate a rather general result for 
mass x radiation interactions. Using the 2t-pole 
retarded solutions of Eqs. (3.10) and the definition of 
Do, one can easily show that the corresponding 
second-order correction always gives rise to a wave 
tail equivalent to an advanced radiation solution, if 
and when the first-order radiation is shut off. The 
moment of the incoming wave is proportional to 

[
(t + 3)(t - 1) + (t + 2)(t + l)(t - 2)J 

t - 2 t(t - 1) 

J
Ou, at(u') , 

x tdu, 
-00 (v - u') 

(4.9) 

which vanishes for no t. For a wide class of at(u')'s 
the moment is clearly proportional to llvt for large v, 
so the tail will be O(v-t). 

B. Radiation x Radiation Interaction 

The complete second-order correction to the first­
order solution given by Eqs. (4.1) must include the 
(R2 x R2) interaction. The driving term Do(R2 x R2) 
was evaluated in Ref. 6, and Eq. (3.15) was solved 
there for 'Y o(R2 x R2). (The other 'Y A were not 
calculated.) In this paper we are primarily interested 
in wave tails, and, having limited ourselves to a 
sandwich wave, we now obtain the entire set of 'Y A 

for those regions of space-time outside of the sandwich 
wave. 

In part A of this section we set 

(J0 = ('Y~ + ip~) I u=-oo = 'Yn u=-oo = O. 

We also assumed, for simplicity, that the sandwich 
wave was centered on u = 0 and of thickness 2uo. 
Using Eqs. (3.15a) and (3.15b), we retain from the 
above assumptions 'Y~ = 'Y~ = O. On the other hand, 
'Y~ and'Y~ are now nonvanishing due to the (R2 x R2) 
interaction. We could evaluate 'Y~(u) and 'Y~(u) with 

the aid of Eqs. (3.15c), (3.15d), and (3.15e). We 
could then, in principle, solve Eq. (3.13) for 
'Yo(R2 X R2), using Eq. (3.l2a), but it is considerably 
easier to obtain 'Y o(R2 x R2) from Ref. 6. With 'Y~, 
'Y~, 'Y~, 'Y~, and 'Yo known, we can then use the 
second-order counterpart of Eqs. (3.5) to obtain all 
the 'Y A' The details of this tedious but straight­
forward calculation are omitted and only the result 
given here. (It should be pointed out, however, that 
since we are only concerned with the regions u < -Uo 

and u > +uo , the quantities Ro, R I , R2 , and Ra play 
no part in the calculation, which is a big simplifica­
tion.) The result, in the notation of Eqs. (3.10), is 

'Y A(R2 x R2) = 0, u < -Uo , 

and 

'YA (R2 x R2) 

= r-2dA- 2 ( Mo) i 2- A)/2K (0) Yo r3-A 2-A 2-A 00 

where 

1 
Mo = - -1 Fluo), 

67T
Y 

M2 = 1- (~). [t(u - uo)2F2(u O ) 

84 7T 

+ (u - uo)FI(Uo) + Fo(uo)], 

M4 = - __ 1-. [lieu - uO)'F2(u O ) 

336(7T) 

(4.10a) 

(4. lOb) 

(4.11) 

+ ~(u - uo )3Fl(UO ) + !(u - uo)2Fo(uo) 
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with 

F2(U) = ~ L""o(q'([ + ijq) du', 

FI(U) = L Uuo[F2(U') + H5qij" - ijen] du', 

Fo(u) = L:o[FI(U') + fqij] du', (4.12) 

F _leU) = LUuo[Fo(u') + 2q·cj] du', 

F _2(U) = J:uJF _leU') + !(!qij + qq)] du'. 

Thus the (R2 x R2) interaction also contributes a 
tail. If the tail is made to vanish before the sandwich 
wave (as is the case with the choice of initial data here), 
it takes the form given by Eq. (4.l0b) after the 
sandwich wave. In this later region it is once again a 
second-order "formally linear" solution (but not a 
global "formally linear" solution). If we use the 
interpretive language of the linear theory '¥ o(R2 x R2) 
can be described as a nonradiative motion character­
ized by nonvanishing monopole, quadrupole, and 
16-pole moments given by Eqs. (4.11). The monopole 
moment is precisely the Bondi mass loss of the source 
due to the emission of the first-order wave. The 
vanishing dipole moment testifies to the lack of 
recoil when a mass emits quadrupole radiation. The 
quadruPQle and 16-pole moments may describe the 
redistribution of the matter of the source as a con­
sequence of the emission of radiation; their time 
dependence suggests that the radiation followed an 
"explosion" of the source and that the source material 
is spreading in time causing the moments to diverge 
in u as u -+ 00, but with no further radiation emitted. 

It may be pointed out that in the third-order 
interaction (R2 x R2 x R2) the terms arising from 
(I)q(u) (2)Mo will give rise to a radiative tail in the same 
manner as the (RO x R2) interaction of part A of 
this section. Hence, barring unexpected cancellations 
among terms arising from wq (2)Mo with other third­
order terms, the third-order interaction of the 
quadrupole radiation with itself will show a back­
scattering of the radiation. 

S. CONCLUSION 

We summarize the main physical results of the 
paper. We have shown that if a first-order mass emits 
a first-order gravitational, quadrupole sandwich wave, 
the second-order correction has the following prop­
erties. 

(1) One can give initial data such that the 
second-order correction vanishes in that region of 

space-time preceding the passage of the sandwich 
wave. If one does so, then 

(2) the second-order correction is, in general, 
nonvanishing in that region of space-time following 
the passage of the sandwich wave. 

This result is not new2 ; however, we have now suc­
ceed~d in calculating this tail exactly in second order, 
and In making a sensible interpretation. 
. Th~,soluti?n mentioned in (2) is, in fact, a "formally 
~mear (albeIt second-order) solution, and we interpret 
It by methods appropriate to the linear theory. We 
find that it consists of three parts: 

(a) An arbitrary second-order retarded solution 
which can be, and was, eliminated from the problem 
by the choice of initial data. 

(b) A second-order advanced radiation solution 
focused on the source of the original wave. This 
effect is proportional to the first-order mass, and thus 
represents a continuing partial reflection of the first­
order outgoing wave by the first-order Schwarzschild 
curvature of the space. 

(c) A second-order nonradiative motion char­
acterized by nonvanishing monopole, quadrupole, 
and 16-pole moments. The monopole moment is a 
constant and is the mass loss of the source due to the 
radiation emitted. The quadrupole and 16-pole 
moments diverge as u -+ 00 and are consistent with 
the idea that the emission of radiation was accom­
panied by an explosion of the source, so that the 
source material is now spreading out from its 
original location. 

An interesting and surprising property of the second­
order solution is that the radiation x radiation 
interaction is responsible only for the tail described in 
(c) and makes no contribution to that described in 
(b). This suggests that one set up a first-order solution 
representing an imploding-exploding quadrupole 
sandwich wave without sources, and investigate the 
second-order correction. Our result suggests that 
there may be no tail either before the incoming wave 
or after the outgoing wave. 
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APPENDIX A 

We give the definition of the angular differential 
operator thop, denoted by 0, and the spin-weighted 
spherical harmonics • Ytm' which were introduced in 
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Sec. 3. For more details we refer the reader to the 
papers where these quantities were first introduced.13.14 

A quantity 'Yj is said to have spin-weight s if a 
transformation m'll = ei'Pm" of the flat-space vector 

mIA = (..)2/2r)(0, 0, 1, i/sin 0) induces the transfor­
mation 'Yj' = eis~''Yj. The operator thop is then de­
fined in terms of the spin weight of the quantity on 
which it operates by 

of) = -(sin O)'(~ + -. 1_' ~) [(sin O)-sf)J. (Al) 
00 sm f) ocp 

where s is the spin weight of 'Yj. We also define "5 by 

5'Yj = -(sin f)rs(~ - -. z_' ~) [(sin f)"f)J. (A2) 
of) sm f) ocp 

It follows from the definitions, Eqs. (2.5) and (2.4g), 
that the (l)'F' A have spin weights 2 - A and that (l)ao 

has spin weight 2. For the second-order quantities 
it can be shown that the (2)'F' A have spin weights 2 - A, 
that (2)a

o has spin weight 2, and that Rl has spin 
weight 1. With this information all occurrences of 0 

and b in this paper are well defined. 
The spin-weighted spherical harmonics s Y1m are de­

fined by 

o ~ s ~ t, (A3) 
-t~ s ~ 0, 

where the 0 Ytm = Ytm are the ordinary spherical 
harmonics and the s Ytm are of spin weight s. The 

operators 0 and 0 are raising and lowering operators, 
respectively, for spin-weighted quantities. In particular, 
we have 

Os Yfm = [(t - s)(t + s + 1)Ji-s+1Yfm' 

5" s Ytm = - [(t + s)(t - s + 1)]!s-lYfm, (A4) 

from which it follows that 

o5.Ytm= -(t+s)(t-s+ l).Yfm' (AS) 

The functions. Yto are familiar; they are proportional 
to the usual associated Legendre polynomials Pi: 

1 (2t + 1)!- s sYto = --t -- K_.(t)P" 
(21T) 2 

s 2 0, 

Y = (_1)8 (2t + 1)* K (t)P-S, 
• to (21T)t 2 • t s < o. (A6) 

18 E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966). 
14 J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, 

and E. c: G. Sudarshan. I. Math. Phys. 8, 2155 (1967). 

APPENDIX B 

Let the linear operator occurring in Eq. (3.17) be 
defined by 

1:<1> == d> _ iD<I> _1-<1> + L(L + 1) - 21r
r,3<1>dr" 

2r 2r5 00 
(Bl) 

If in Eq. (B1) we make the substitution 

<I> = ,L-2DLH(~) (B2) 
rL - 1 ' 

and use the identity 

D[rL+lDL(~)J == rLDL+IF, (B3) 

which holds for all integer L 2 0 and for any arbitrary 
function F, we find that 

(<I> = ,L-2 DL+2[rL~1 (B - iDB) J. (B4) 

where the assumption is made that 

,£H D
L

+
1 (~) 100 = O. (B5) 

For simplicity we require Eq. (B5), although all that 
is needed is that r L+2DL+l(BrL)lr=oo be defined. For 
all solutions used in this paper Eq. (B5) is satisfied. 

It is now clear that to solve 

it is sufficient to solve 

B _ DB = (_1)L+2n! hLn(U) (B6) 
Ln t Ln (n + L + 2)! rn-L+2' 

We note that if the independent variables are changed 
from U and r to U and u + 2r = v, then %u - H%r) 
becomes just o/iJu, and the above equation can be 
easily integrated to yield 

B _ (_I)L+22n-L+2n ! 

Ln - (n + L + 2)! 

Ju h (u') du' 
X -00 (u + ~; _ u,)n-L+2 + H L' (B7) 

where HL is an arbitrary function of u + 2r. It should 
be noticed that BLn given by Eq. (B7) is still a solution 
of Eq. (B6) when the - oo's are replaced by arbitrary 
functions of u + 2r; however, we consider this 
freedom to be absorbed into the arbitrary function 
H L . [It is conceivable that for some HLn(u') the inte­
gral in Eq. (B7) may not be defined, but that the 
integral expression for the solution would still be 
possible with some lower limit on the integral other 
than - oo.J The solution arising from the whole 
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driving term is then 
t+t' 

2K_2(L)BL = !BLn . 
n=O 

We have thus shown how to solve Eq. (3.17) for that 
part of the solution arising from DOL(Rt x Rt') and 
have derived Eq. (3.2Ia). 

Let us now consider the equation 

1:<1> = R, (BS) 

where R is a given function of u and r. The investiga­
tion of the cases of advanced x retarded or advanced 
x advanced interactions (or even higher-order pertur­
bation) problems can be reduced to the solving of 
Eq. (BS) (this was indicated in Sec. 3). The analysis 
which led to Eq. (B6) will lead from Eq. (BS) to 

ih - tDBL = gL(U, r), (B9) 

where gL is a known function constructed in a definite 
manner from the given function R. The solution to 
Eq. (B9) is found in a manner similar to that of Eq. 
(B6) to be 

BL = f~ gL(U' , Hu + 2r - u'» du' + HL , (BIO) 

where H L is an arbitrary function of u + 2r and the 
previous remarks on the lower limit - 00 apply here 
also. 

APPENDIX C 

The first-order corrections to the other TF variables 
for a given (U'Y A are calculated by means of Eqs. 
(3.S) and (3.9). These corrections for the 'Y A of 
Eqs. (4.1) are used in calculations in this paper, and 
are given here for completeness15 : 

(I)p = 0, 

(UG = (~ + ~?) [ - H~)l K 2(2) 2 Y20} 

.. - [ 1 1 
wet = (~+?) '-(~) ~2K_l(2)-lY20} 

16 It should be emphasized that in some of these expressions the 
• Ytm are serving only as complete sets, and do not necessarily 
represent the spin weights correctly. The quantity y, for example, 
does not have a well-defined spin weight. 

(I){J = (1)7' - (I) 0(, 

(
ii 3q q ) [ (7T)l ] m 1 (I)f1. = ~ + 2

r
3 +;:; -4 5" oY20 + -;: 7T oYoo , 

(
ii q + llq q + Sq)[ (7T)l ] 

mY = ~ + 6r3 + ~ - 2 5" oY20 

(q - q q - q) (7Tl ) + --+-- -- Y. 
,3 ,4 6 ° 00 
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